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3. SYSTEM DESIGN AND ANALYSIS

This section of the report describes the system analyses conducted in the major areas

of trajectories, guidance requirements, and reliability. It also contains the ground

rules under which the study was conducted, and describes the system configurations

arrived at.

3.1 SYSTEM DESIGN GROUND RULES

As stated in Section 1, a number of ground rules were established for this study to
ensure that the results would be:

1. Compatible with the Saturn V launch vehicle

2. Consistent with the range of uncertainty existing in the definition of the

Mars environment

3. Comparable to the results obtained in the two previous Voyager studies.

Based on these general considerations, the following specific ground rules emerge:

. Total system weight as a function of launch energy required cannot exceed

the values shown in Figure 3.2-1. This data was obtained from JPL early

in the study.

o The shroud volume limitations were defined through discussions with JPL

and MSFC and are described in Section 6.1. Basically, it was determined

that shroud length is limited to approximately 7 00 inches due to bending

moments produced by aerodynamic loading on the shroud.

3. The range of Martian atmospheres considered is represented by JPL models

G through K with surface pressure varying from 11 to 30 millibars.

4. Guidance accuracies used for the basic study result in an entry angle corridor

or 20 to 35 degrees to be consistent with the previous studies. The guidance

analysis presented in Section 3.4 coupled with current predictions of DSIF

capability indicate that this accuracy can be easily improved, and the effects

of such improvement on the system design are described in Section 9.

5. Primary retardation is achieved by parachutes. Deployment of a drogue chute
at Mach 2.5 is considered state-of-the-art. This Mach number must be reached

at an altitude of 20,000 feet or greater to allow a successful retardation sequence.

6. The maximum entry velocity considered is 26,000 feet per second. The heat

shield is designed for a nominal entry velocity of 21,000 feet per second.

3-1
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.

10.

11.

12.

13.

The combination of ground rules 3,4,5 and 6 impose a requirement that the

ballistic coefficient, W/CDA, be 15 lb/ft 2 or less. For Lander weights

which require drag areas in excess of the 20-foot diameter allowed by the

Saturn V shroud, extendible flaps are used to obtain the needed area.

All Bus trajectories will be fly-by to avoid requirements for sterilization

of the Bus or design of an extremely reliable system for deflecting the Bus

from an impact trajectory.

All Lander equipment must be heat sterilizable in accordance with NASA

requirements.

Subsystem designs evolved in the previous Voyager studies are applied

unless factors such as vehicle size dictated a different approach. That is,

major effort was not expended re-evaluating the basic approaches available

for accomplishing a given subsystem function.

Study effort is concentrated on the design of Landers to carry a range of

scientific payloads; only brief consideration is given to orbiters from the

standpoint of how they can be included as part of an overall Saturn V payload.

Design life for Landers will cover the transit phase, up to 1 year, plus 1 to

2 years of operation on the surface of the planet.

As nearly as possible, all designs are to be based on 1965 state-of-the-art.

Areas where adherence to this ground rule might be questioned were pointed

out in Section 1.3.2.
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3.2 TRAJECTORY ANALYSIS

In the previous Voyager studies conducted by GE-MSD for NASA/JPL, the trajectory

analyses were concerned with choosing the trajectory which would result in the greatest

scientific mission value and the determination of the requirements placed on the mission

and spacecraft by this trajectory. Since the present study is of a parametric nature

without a definition of specific mission requirements, detailed analyses such as per-

formed in the previous studies were not made. Velocity changes required for orbit

correction, time of arrival adjustment and Lander separation were not uniquely deter-

mined; sufficient propulsion capability was provided for worst case conditions. Other

trajectory considerations such as error analyses, Sun-Earth-Canopus-Spacecraft

geometry during cruise and Sun-Mars-Earth geometry during the surface phase may

be determined by the procedure outlined in the previous Voyager studies for specific

missions which may be chosen for further study.

The trajectory considerations studied were concerned with defining the: 1) capability IJ

of the Saturn V launch vehicle as a function of trip time, launch-window duration, and

type of mission, and 2) the relationship between these trajectory parameters and

specific mission parameters such as communication distance, etc. The results of

these analyses are given in the following two sections.

3.2.1 SATURN V MISSION CAPABILITY

The capability of the Saturn V launch vehicle as a function of the vis viva energy

(injection energy of the earth escape hyperbolic) is shown by Figure 3.2-1. The Saturn

100
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Figure 3.2-1. Launch Capability
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V is compared to the Atlas-Centaur, the Titan IIIC, and the Saturn 1B with S VI upper
stage in this sameFigure. The required vis viva energy (C3) is uniquely determined
by a specific Mars trajectory. Of specific interest in a parametric study is the
variation of the vis viva energy with the time of flight to Mars and the duration of the
launchwindow; since the booster capability is a function of the vls viva energy, the
booster launch capability is also a function of trip time and launch-window duration as
shown in Table 3.2-1.

TABLE 3.2-1. BOOSTERLAUNCHCAPABILITY AS A FUNCTION OF TRIP TIME
AND LAUNCH WINDOWDURATION

Figure Number

3.2-2
3.2-3
3.2-4
3.2-5
3.2-6
3.2-7
3.2-8
3.2-9
3.2-10
3.2-11
3.2-12

Year

1971
1971
1971
1973
1973
1975
1975
1975
1975
1975
1975

Trajectory
Type

I
I
I
I
I
I
I
I
II
II
II

Launch
Window

(days)
30
60
90
30
60
30
60
90
30
60
9O

The curves show, as a function of trip time: 1) the total weight that canbe injected into
a Mars trajectory, 2) the weight that can be put into Mars orbit if all the weight
capability is deviated to an Orbiter plus propulsion systems and 3) the weight that can
be put into a Mars orbit if 20,000 poundsor 40,000 poundsof direct entry Landers are
also carried.

The Mars asymptotic approach speedis also of considerable interest in that it affects
the Lander entry velocity and the propulsion required for injection into an orbit about
Mars. The Lander entry velocity at 106feet as a function of the asymptotic approach
speed is shownin Figure 3.2-13. The designs of the Landers presented in this report
are valid for entry velocities less than 26,000 feet per secondwhich corresponds to an
asymptotic approachspeedof 6.25 Km/sec. This limitation is noted in Figures 3.2-2
through 3.2-9, the trip time for which the asymptotic approach speed is greater than
6.25 Km/sec for 1975Type II trajectories is less than that shown in Figures 3.2-10
through 3.2-12. The effect of the Mars asymptotic approach speed on a Mars Orbiter
mission or combination direct-entry Lander and Orbiter mission is also shownin
Figures 3.2-2 through3.2-12 by the variation in Orbiter weight capability as a function
of trip time and launch-windowduration. The Orbiter weight capability showndoes not
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contain any orbit-injection propellant or propulsion subsystem weight and assumes a

midcourse orbit correction fuel requirement of one percent of the booster launch

capability, an orbit injection propulsion subsystem mass fraction of 0.85, a specific

impulse of 310 seconds, and a launch vehicle adapter weight of 1500 pounds.

Additional trajectory data is given by Tables 3.2-2 through 3.2-5. In general only

Class I trajectories were considered in order to minimize the trip time and Mars-

Earth communication distance. However, it is necessary to consider Class II

trajectories for 1975 Type I missions in order to meet the asymptotic approach speed

restriction of 6.25 km/sec. This is shown in Figure 3.2-9 by the maximum mission

weight capability at approximately 200 days flight time which corresponds to a

minimum energy trip; the decrease ia mission weight capability for longer trip times

is due to the switch from Class I to Class II trajectories. The magnitude of the

declination of the outgoing asymptotic is less than 34 degrees for the 1971, 1973, and

1975 type II trajectories; the declination for 1975 type I trajectories are indicated in
Table 3.2-4. Thus, either the present restrictions on the launch azimuth for AMR

would have to be waived for most 1975 type I missions or a dog-leg trajectory would
be required.

3.2.2 MISSION VALUE CONSIDERATIONS

In addition to general trajectory characteristics, there are other trajectory related

parameters which can greatly affect the mission value. These include communication

distance, reliability, arrival date, and the dispersion of multiple Landers on the

surface of Mars. The arrival date is of importance if the wave of darkening from the

north polar cap of Mars is to be studied. The maximum excursion of the wave from

the north pole occurs at approximately summer solstice in the northern hemisphere.

The arrival time as a function of flight time and launch date is shown on the trajectory

characteristic map for 1975 in Figure 3.2-14. The 1975 and 1977 opportunities are

best suited for a study of the darkening wave; nominal arrival for a 1971 mission would

be at approximately winter solstice and for 1973, nominal arrival would be at approxi-

mately vernal equinox. The Earth-Mars-Sun angle for the 1975 opportunity as shown

by Figure 3.2-15 will be such that Mars will not be eclipsed by the Sun during the

maximum excursion of the darkening wave further indicating the desirability for study-

ing the wave during the 1975 opportunity.

For Lander missions it is desirable to transmit data to Earth at a maximum rate

during the first part of the surface phase and then transmit at a slower rate thereafter.

A system trade-off parameter in accomplishing this variation in data rate is the

communication distance. This is shown in Figures 3.2-16 through 3.2-19 in terms of

a communication distance factor as a function of trip time and launch-window duration.
The communication rates defined in Section 4.2 are based on a nominal distance of 1.4

AU; the actual data rate capability is the product of the rates given in Section 4.2 and

the factor of Figures of 3.2-16 through 3.2-19. The maximum value of this factor for

1971 is 14, 10.1 for 1973, and 7.7 for 1975.
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For those configurations which consist of multiple clusters of Landers or multiple
Landers, the time of arrival at Mars for the Clusters or individual Landers should be

varied for both operational and mission value reasons. The adjustment of the time

of arrival will allow Landers to be dispersed over the surface of Mars increasing the

scientific value of the mission. A first approximation to the velocity change (impulse)

required to obtain a time of arrival change is shown in Figure 3.2-20. To increase

the overall reliability of the mission, the adjustment should be made as near to the

arrival time as possible. A reasonable compromise between the velocity change

required and time before arrival is for the adjustment to be made about 1000 hours

before arrival; the velocity change would be approximately 150 ft/sec for a 12-hour

adjustment.
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3.3 RELIABILITY ANALYSIS

Many factors govern the probability of success of a Lander. The booster reliability,

system configuration, Bus reliabilities, subsystem reliabilities, terrain suitability
and transit time are all items that must be considered in determining if the mission

will be accomplished. The booster reliability and terrain suitability are factors

over which the spacecraft designer has little control. The booster reliability is

assumed to be 80 percent and, per the previous two Voyager studies, the terrain

suitability is estimated as 90 percent.

The system configurations include a varying number of Landers per Cluster, number

of Clusters per spacecraft, and different Bus subsystem designs. The system con-

figurations are fully discussed in Section 6. Briefly, the configurations are summarized
in Table 3.3-1.

TABLE 3.3-1. SYSTEM CONFIGURATION SUMMARY

!

I
I

I

|

!
!
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System

A

B

C

D

E

Number

of

C1 uste rs

2

2

Number

of

Landers

4

3

Number

of

Bases

3-Cluster

1-Midcourse

2-Cluster

1-Midcourse

3-Individual

1-Midcourse

2 -Individual

1-Midcourse

1-Transit

Gross

Weight

per Lander

Obs)

1400

2000

6200

13,100

26,200

Scientific

Payload

per Lander

(lbs)

150

370

1760

3100

5000

The Cluster Buses for systems A and B and C and D are the same and are defined in

Section 6. System A has the greatest probability of landing some payload on the

surface of Mars and System E has the highest probability of landing the highest weight
payload.

Since in the main study - direct entry Landers having a ballistic coefficient of 15

lbs/ft 2 -the full booster capability cannot effectively be utilized, weight is available

for redundancy. However, because of the design limit placed on the ballistic

coefficient, redundancy in Lander subsystems cannot be used without deducting from

i
I
I
I

I
I
!
I
I
I

I
!
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I

the scientific payload. To show the effect of Lander subsystem redundancy on scien-

tific payload, a 10 percent increase in the total subsystems weight for a 2000 pound

Lander was assumed. The redundancy of components yielding the greatest increase

in reliability for the 10 percent increase in total subsystem weight was determined.

(See Appendix G for an enumeration of these components.) Making these same

components redundant for the Landers of Systems A, C, D and E, the corresponding

scientific payload per Lander is as shown in Table 3.3-2.

TABLE 3.3-2. EFFECT OF LANDER REDUNDANCY ON LANDER PAYLOAD

Lander

Weight

(lbs)

1400

2000

6200

13,100

26,200

Payload

Without

Redundancy

Obs)

150

370

1760

3100

5000

Payload
With

Redundancy

(lbs)

65

275

1640

2950

4800

Redundancy

Weight

O-bs)

85

95

120

150

200

Bus components were made redundant as necessary to improve reliability; the

analysis and selection of redundant component is given in the Appendix G. In

System E, most Bus subsystems were made redundant in order to increase the relia-

bility of the single Bus to the double Bus, Cluster or individual, and midcourse con-

figuration.

The transit or flight time from Earth to Mars has a major effect on the probability

of placing operating Landers on Mars surface. This is shown by Figures 3.3-1

through 3. 3-5 for the five system configurations. Thus, reliability must be a

major consideration in selecting the trajectory to be used. In arriving at the

probability of success shown in these curves, the redundancy of Lander subsystem

components as discussed above was assumed; also assumed was that unless the

Midcourse Bus failed, activation of the Cluster or individual Buses was delayed until

1000 hours before arrival.

The Lander and Lander subsystems reliabilities used in obtaining the curves of

Figures 3.3-1 through 3.3-5 for a 225-day flight time plus 100 hours after separation

are shown in Table 3.3-1. The Bus and Bus subsystemreliabilties for a 225-day
flight time are shown in Table 3.3-4.
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TABLE 3.3-3. LANDER RELIABILITY - 225 DAYS FLIGHT TIME

Subsystem Reliability

Communications

Thermal Control

Retardation

Ground Orientation

Power Supply

Separation and Propulsion

Lander Vehicle

0. 992

0. 974

0.920

0.990

0.985

0. 994

0. 862

TABLE 3.3-4. BUS RELIABILITY - 225 DAYS FLIGHT TIME

i
I

I
I
I

I
I

Subsystem

Communication

Guidance & Control

Propulsion

Bus Vehicle

Midcourse

Bus

O. 978

O. 944

0. 999

0.922

Cluster

Bus

0.992

0.981

0.999

0.972

Individual

Bus

0.999

0.981

0,999

0. 979

Transit

Bus

0. 987

0. 995

0. 999

0.981

I

I
I

I
The basis for the reliabflities shown in Tables 3.3-3 and 3.3-4 are given in

Appendix G.
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3.4 GUIDANCE ANALYSIS

The ballistic parameter W/CDA, and therefore the useful payload of a Lander, can

be increased ff the entry angle can be made small, i.e., grazing into the atmosphere.

Designing a vehicle with a high W/CDA, however, imposes not only a lower limit on
entry angle to prevent skip, but _,2so an upper limit beyond which retardation is in-

adequate. The entry angle dispersion, which dictates the permissible ballistic

parameter, is a function of the performance of the navigation and guidance system.

In this section the equations relating guidance errors to entry angle errors are used

to calculate expected variations in angle for a range of operating conditions. Systems

employing DSIF tracking and on-board line of sight sensors are considered. The

following discussion considers guidance errors in the approach orbit plane only. It is

shown in Appendix F that out of plane effects are negligible.

The approach guidance problem can be considerably simplified if the following

assumptions can be made:

1. Velocity uncertainties are negligible

2. During the time when line of sight observations are being made, the vehicle

remains essentially on the asymptote of the approach hyperbola.

Both these conditions are reasonable for the approach phase of the Voyager mission,

as is demonstrated in Appendix F. Since error propagation and interaction are neg-

ligible at large distances (> 10 radii), the impact parameter error can be treated

independently as follows:

Let (_bo be the expected error in the impact parameter, b, existing at the start of

the approach phase, i.e., residual DSIF error.

Crbi is the error incurred in a single position fix from a measurement of the line of

sight to the planet. With the assumption of no error propagation, this error trans-

lates directly to impact parameter error. If Crai is the angular error incurred in the

ith measurement of the line of sight, the associated error in the impact parameter is

approximately

¢Y _ R. o" (1)
bi 1 ai

where R i is the distance of the vehicle from the planet at the time of the i th measure-

ment. This approximation is valid as long as the angle between the velocity vector

and the line of sight to the planet is small. The resulting impact parameter error

after n line of sight measurements is then:
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I

I 1

1

.2R.2
al 1

I assuming that all errors are random, independent and unbiased.

I

(2)

This implies that

in computing the corrections to the trajectory during an actual mission, each meas-

urement, as well as the DSIF information, will be weighted in accordance with its

basic accuracy in defining the impact parameter.

I

I

I

To this error must be added the impact parameter error due to errors in the

separation impulse. If the separation impulse is normal to the path, pointing errors

are negligible and only the magnitude error has an apprecible effect on entry angle

dispersion. If this error is (_v, and if _bv is the resulting effect on impact param-

eter, we have:

R
S

Crbv _ V _v (3)
S

I

I
I

where R s and V s are the distance from the planet and velocity, respectively, at

separation. The total error on impact parameter after separation is then:

= _ff2 + (_2fib total bn bv

The entry angle dispersion is given by:

(4)

I

I
I

I

cot Se
- (5)

re b c _b tot

Where b c is the nominal capsule impact parameter and _e is the nominal entry
angle.

Some calculations based on this analysis were made using an approach velocity and

separation distance appropriate for a 1971 Mars mission. Entry angle dispersions

were obtained for several combinations of initial error, measurement error and

measurement frequency.

I

I

These results were based on the following conditions:

Approach velocity - 2.93 km/sec.

Separation distance - 250,000 km

I

I
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Nominal entry angle - 25°

Entry altitude - 106feet {Re = 3640 km)

Separation impulse - 100 ft/sec.

The capsule impact parameter after separation for these conditions is 6390 km.

Line of sight measurements with accuracies of 1.0,0.3 and 0.1 milliradian were

assumed to be made at rates of one per hour and one every 8 hours starting at a
distance of 4 x 106 km, with the last measurement being made at a distance of

260,000 km, or approximately 1 hour before separation.

An error of 1 percent in magnitude of the separation impulse results in a 26 Km error

in the impact parameter.

The results are shown in Figure 3.4-1, which indicates that when DSIF errors are

large, say over 150 KM, significant improvement is obtained even with a 1 miUiradian

LOS sensor. Below this point, better LOS information is needed to make a

significant improvement over the DSIF performance alone.

The 3 g dispersions in entry angle are shown in Table 3.4-1.

These entry angle dispersions are computed on the assumption that the variation in

entry angle is linear with respect to impact parameter error. This approximation

is valid for dispersions of 5 ° or less. For larger dispersion, the actual dispersions

are slightly larger than indicated. For instance, with an impact parameter error of

150 km (1(_), the 3_ entry angle range is from 14.1 ° to 32.6 o, or a spread of 18.5 °.

Using the linear relationship, a 3g spread of 17.4 ° is obtained.

Entry angle dispersions resulting from the use of DSIF information only are given
in Table 3.4-2.

Much of the error reduction by means of line of sight observations results from the

smoothing effect of averaging many measurements. If an appreciable portion of the

error is systematic rather than random, the accuracy will not be improved by

taking many measurements and may in fact be degraded. It is of interest, therefore,

to consider the accuracy obtainable if a single measurement is made at the minimum

range of 260,000 kin. The resulting 3 (_ dispersions in entry angle for this condition

are shown in Figure 3.4-2 and Table 3.4-3. A 1 percent velocity execution error

at separation is again included.

In the case of random errors, it is again shown that a significant improvement over

DSIF alone can be made with a 1 mrd LOS sensor when DSIF error is greater than

± 200 KM. With a 0.3 mrd LOS sensor, significant improvements result even when
the DSIF error is only + 100 KIM.
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TABLE 3.4-1. RANDOM ERRORS

Impact Parameter Error (_b (km)

I

I

I

Data

Rate

1 meas. /

hour

1 meas. /

8 hours

DSIF

Error

(kin)

lcyb

+ 400

+ 150

÷ 5O

Meas.

Error

Milliradian

la

1.0

0.3

0.I

1.0

0.3

0. I

1.0

Due to

LOS

Meas.

Only

53.5

16.0

05.4

53.5

16.0

05.4

53.5

LOS

+ DSIF

53.0

16.0

05.4

50.5

16.0

05.4

36.5

LOS +

DSIF

+ Execution

Error

59.0

30.5

26.5

55.7

30.5

26.5

44.5

Total Entry

Angle Dispersion

(degrees)
3_

+3.4

1.8

1.5

÷
-3.3

1.8

1.5

+
-2.6

+ 400

+ 150

- 50

1.0

0.3

0.1

1.0

0.3

0. I

1.0

0.3

0. i

16.0

05.4

140.0

42.0

14.0

140.0

42.0

14.0

140.0

42.0

14.0

15.2

05.4

132.0

41.8

14.0

102.0

40.5

14.0

47.0

32.2

13.5

30.0

26.5

134.0

49.0

29.5

105.0

45.0

29.5

54.0

41.5

29.0

+7.8

2.9

1.7

+

-6.1

2.8

1.7

+-3.1

2.4

1.7

I

I

I

I

I

I

I

I

I

I

I

I

3-36

I

I

I

I



I

I

i
I

I

I

I
I

0 0
r_

0 o
C_J

(93(3) _IO(]I_IO0 ,k_llN3 .o £

O

I

o

,F-I

o

Q

o

=

!

e_
Q
Z

c4
!

_4

3-37



TABLE 3.4-2. ENTRY ANGLE DISPERSIONS FROM

USE OF DSIF INFORMATION ONLY

DO

(kin)

+ 400 i a

+ 150

+ 50

3"50 + %V

(kin)

+ 400 I(_

+ 152

+ 56.3

7e

(degrees)

+ 23.2

+8.8

+-3.3

3(I

TABLE 3.4-3. EFFECT OF BIAS ERRORS

I

I

I

I

I

I

DSIF

Error

(km)

+

1%

400

± 150

+ 50

Meas.

Error

(Bias)

+1.0

0.3

0.1

+
-i.0

0.3

0. i

+i.0

0.3

0.i

Impact Parameter Error (_b (Kin)

DSIF

LOS

Error

Only

+
- 260

78

26

+
- 260

78

26

± 260

78

26

LOS

+

DSIF

+ 218.0

76.5

26.0

+
- 130.0

69.3

25.6

+- 49.0

42.1

23.0

LOS +

DSIF

+ Execution

Error

+ 219

81

37

± 132

74

36.5

+- 55.5

49.5

35.0

Total Energy

Angle Dispersion

(degrees)
3(_

+ 12.7

4.7

2.2

+
- 7.7

4.3

2.1

+- 3.2

2.9

2.0

I

I

I

I

I

I

I
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Effect of Error in Planet Radius On Entry Angle

Along with the entry altitude and the planet mass, the accuracy with which the

radius of the target planet is known is a primary factor influencing the accuracy

that a desired entry angle can achieve. In determining the entry trajectory, a

vacuum trajectory is computed that has the desired path angle at the radius (Re)

where entry is expected. Assuming the entry altitude is correctly estimated

I

I

I

I

I

I



I
I

I
I

I

I

I
I

(measured from the surface) an error in planet radius displaces the entry radius an

equal amount. Generally speaking if the planet is larger than anticipated, entry occurs

early and the entry angle is larger.

The relationships are as follows (see Figure 3.4-3):

V_

Figure 3.4-3. Error in Planet Radius Relationships

_V 2/_Ve = o0 2 + _t
e

I Vp =_2 + 2_
Rp

I VpRp = V R cos_ =V_b
e e e

I
I

I

I

I
I

I

I

I

V b
Cos _ -

e VR
e e

Where distances are in kilometers and/_ = 43,020 km 3 sec2

For a Mars 1971 mission,

and
V = 2.93 km/sec

b = 8860 kin

for a flyby altitude of 1000 nautical miles.

If the Lander is separated at 250,000 km with AVnormal
trajectory where

= 100 ft/sec it is on a

(6)

(7)

(8)

(9)
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V_ remains 2.93

at

b -- 6390

_' = 25.1°
e

R = 3640 km
e

The effect of an error _r in planet radius is to give an equal error to R . By

substituting R e + _r for R e in equations 1) and 4) the resulting entry angle is

obtained. In Figure 3.4-4 curve A shows the results of these calculations for the
above case.

The discussion above applies to the case where the location of the plmlet center is

correctly determined, only the radius is in error. Since the planet as seen from an

approaching spacecraft is only partially illuminated by the sun, and since during the

approach phase the planet subtends a minimum angle of about 1/4 degree, the possi-

bility of tracking the limb of the planet instead of the center can be considered.

When the limb is tracked, the planet center is defined relative to the limb and b is

defined as b' + r. If the planet radius (r) is in error, R e is in error as before, and
bbecomesb' +r+ Ar, orb+_r.

By entering in equations (6) and (9) these values of R e + _ r and b + /kr for a range
of values of _ r, curve B in Figure 3.4-4 is obtained. From this it is seen that

tracking the planet limb instead of the planet center when taking line-of-sight readings

greatly reduces the errors in Ye due to uncertainty in the radius of Mars.

Different ways of determining the radius of Mars give results that vary + 100 km. A

figure of 50 krn has been estimated as a reasonable lo" value. From Figure 3.4-4 it

is seen that for an error in planet radius of 50 kin, limb tracking reduces the error in

_e from 1 degree or more to 0.1 ° for a nominal 25 degree entry.

Figure 3.4-4.

A

-iO0 -50

Errors in Planet Radius vs. Errors in X

Note: Curve A in Figure 3.4-4 applies equally to errors in R e due to errors in the
assumed entry altitude. These, of course, are not improved by tracking the planet
limb.
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3.5 SYSTEM CONFIGURATION

For an entry vehicle with W/CDA of 15 lb/ft 2, using extendable flaps _ achieve high

drag area for the large vehicles, the shroud volume accommodates a single Lander

capable of carrying a 5000-pound payload, and up to 12 Landers capable of carrying

250 pounds of payload per Lander. This is described in more detail in Section 6.1.1.

The basic 20-foot-shroud diameter determines the largest fixed flare Lander weight

which can be designed for a W/CDA of 15 lb/ft 2 at 6200 pounds. Above this weight

extendable flaps must be used to increase drag area. Below this weight, the Lander

base diameter can be reduced below the maximum accommodated by the shroud. In

configuring systems three Lander diameters were selected to allow packaging as

shown in Figure 3.5-1. The small Landers were packaged in clusters of three or

four per level with the number of clusters determined by the available shroud height.
The next size Lander considered was of such a diameter that it used the full shroud

diameter of 20 feet. Above this size extendable flaps were added to increase the

drag area. The number of Landers that can be carried is thus determined by the

length of flaps required and the shroud length available. It is apparent from con-

sideration of Figure 3.5-1 that Lander weights requiring a base diameter between

9 feet and 11.2 feet or between 11.2 feet and 20 feet will package somewhat less

efficiently within the available shroud volume than the specific sizes chosen.

Determination of Bus configurations to deliver these Landers to Mars is the next

consideration. It was concluded early in the study that use of a Bus for each of the

small Landers was not feasible. First of all, the operational problem posed for the

DSIF by a requirement to simultaneously handle 9 to 12 individual vehicles is nearly

inconceivable. Also, the additional cost of Bus hardware for each small Lander is

quite high for the very small benefit gained by an increase in the probable number of

successful Lander impacts. Therefore, a decision was made to provide a Bus for

each cluster of small Landers rather than for each Lander. For the large Landers

which are not packaged in clusters, a Bus is provided for each Lander.

The degree of integration of the Bus and Lander functions was considered in some

degree. In the Saturn IB Voyager study, the Bus which delivered the Lander to

Mars subsequently served as an Orbiter so all Bus functions were separate from the

Lander and the Lander was inactive during transit. In the Titan IIIC study, due to

weight limitations, Landers and Orbiters were launched on separate vehicles. In

this case, the Bus that delivers the Lander to Mars has no function to perform after

the Lander is delivered and the power and communication subsystems aboard the

Lander can be used during transit rather than have separate systems on the Bus.

When several Landers are carried by a single Bus, the problem of integration be-

tween Bus functions and Lander functions becomes more troublesome. If the com-

munication system within one Lander is to be used to process engineering data from

the other Landers, the number of interconnections becomes quite numerous. This

is particularly true if flexibility is to be provided to allow use of the communication

system aboard any of the Landers to perform this function for all other Landers. It
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was ultimately decided to provide a communication system in the Cluster Bus rather

than use the communication system aboard the Lander. An additional factor contri-

buting to this decision was the fact that there is not a weight limitation on this system.

That is, in no case is the Saturn V weight capability approached and if the weight in-

crease is not accompanied by a volume increase, the weight increase can be accom-

modated. Weight added to the Lander, however, requires an increase in diameter

or flap length to maintain the W/CDA and contributes directly to the volume problem.

In the case of Buses for a single large Lander, the communication system aboard

the Lander is used during the transit phase. Because of the large heat dissipation

in the final stage RF amplifier, however, a thermal control problem is created if

the Lander output stage is used. On the surface of Mars, heat rejection from the

Lander is by means of radiation. Since the aft cover is closed during transit, this

means of heat transfer is ineffective and the large dissipation associated with this

amplifier creates a problem. Therefore, an output stage is located in the Bus asso-

ciated with an individual Lander. In all cases, power during transit is supplied by

the RTG aboard one or more of the Landers.

One system concept which reduces operational problems and provides an increase

in reliability is the use of a Midcourse Bus to provide the Bus function for the entire

assembly of Landers and Individual/Cluster Buses until late in the transit phase.

With this Bus, the entire assembly would remain attached through the midcourse

maneuver and until the vicinity of the planet is reached. Thus, the DSIF has only

one vehicle to control through midcourse, and the operating time required of the

IndividuaL/Cluster Buses is reduced resulting in an increase in reliability. The

Individual/Cluster Buses are sized, however, so that upon failure of the midcourse

Bus at any point in the trajectory, the system can be separated and the Individual/

Cluster Buses can perform the midcourse correction as well as the termina[ guidance

maneuver. The Midcourse Bus has a communication system independent of the

Landers, but uses power from the Lander RTG's.

Table 3.5-1 summarizes the system configurations used in this study. It should be

noted that these configurations are not completely parametric because of the pack-

aging consideratior_ previously mentioned. Definitions of the Buses listed in Table

3.5-1 are given in Table 3.5-2. Alternate system configurations which were not

studied in detail are described in Sections 8 and 9 and include Landers ejected from

a Mars orbit, direct entry high W/CDA Landers, Orbiters in combination with the

systems defined in Table 3.5-1 and surface Rovers.
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TABLE 3.5-1. SYSTEM CONFIGURATIONS

Scientific

Payload

(lb)

150

370

1760

3100

5000

Nominal

Lander

Gross

Weight

(lb)

1400

2000

6200

13,100

26,200

Landers

Per Cluster

Max. No.

of Clusters

3

2

3

2

1

Midcourse

Bus

X

X

X

X

Cluster

Bus

X

X

Individual

Bus

X

X

X*

*Bus subsystem redundant to obtain reliability equivalent to a Midcourse Bus

plus Individual Bus.

Power

Communications

Final Stage RF

Guidance and Control

Cruise

Approach

Propulsion

Midcourse Correction

Time of Arrival Adjustment

Approach Correction

TABLE 3.5-2. BUS DEFINITION

Midcourse

Bus

Lander

Bus

Cluster

Bus

Lander

Bus

Individual

Bus

Lander

Lander

Bus

Yes

No

Yes

No

No

Backup

Yes

Backup

Yes

Yes

Backup*

Yes

Backup*

Yes

Yes

*The only Bus used with the large 26,200 Lander is the Individual Bus.

backup is obtained by subsystem redundancy only.

Therefore,
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4. GROSS PAYLOAD DEFINITION

This section of the report describes the subsystems that are defined as the gross

p,%vload: 1) the scientific payload, 2) the communication subsystem, 3) the electrical

power' subsystem, and 4) the thermal control subsystem. Trade offs can be made

between these subsystems without significantly affecting the basic Lander design so

long as the total gross payload weight remains constant. That is, within a given

gross payload weight, more scientific payload can be added if the power required

b v the payload or power required for communication is reduced so that the power

system cml be reduced by the same amount of weight.

4.1 SCIENTIFIC PAYLOAD REQUIREMENTS

As stated previously, the scientific payload weight per Lander was varied from 250 to

5000 pounds. In addition to the weight, the two parameters of most importance are

the power required by the payload and the communication bit rate required to transmit

the data to Earth. The values assumed for these two parameters are shown in

Figure 4.1-1 and 4.1-2. The nominal values used for the smallest payloads are

based largely on the previous Voyager studies, particularly the Titan IIIC study,

where specific scientific payloads of approximately this weight class were identified

together with the required power and bit rate. The nominal growth of power and bit

rate as a function of payload weight is an engineering estimate. The spread between

the maximum and minimum requirements for power and bit rate was made sufficiently

great that it is felt it will encompass any likely payload within this weight class.

Other payload characteristics assumed for the purposes of this study are the following:

. Payload density is an average of 20 pounds per cubic foot. Provision was

made for this volume in all of the parametric designs on which layout work
was done.

2. Detailed support brackets and special mechanisms, such as a means of

deploying sample collectors, are considered part of the payload.

3. Electrical harnesses between the various instruments and control devices

of the scientific payload should also be included in payload weight.

4. The scientific payload must operate to specification after being subjected

to the entry deceleration of 60g and the impact shock of 125g.

5. All of the payload can tolerate heat sterilization in a non-operating
condition.

Another important payload parameter is its tolerance to a radiation environment

such as that associated with use of an RTG. For lack of specific payload definition,

the following ground rules were used in this study;
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lo Sufficient shielding was provided so that the integrated radiation dose over the

design lifetime within the payload volume is less than 104 rads. This level

is suitable for conventional electronic circuitry.

2. Additional shielding weight to limit the dosage seen by specific components

to less than 104 rads is assumed to be part of the payload weight.

During the study, a list of desirable radiation levels was received from JPL for
instruments carried in Mariner C. This information is presented in Table 4.1-1.

TABLE 4. i-I. MAXIMUM DESIRABLE FLUX OF VARIOUS RADIATIONS

Radiation

Protons

E > 10Mev

10 > E > 0.02 Mev Op''

20kev> E >1 ev

Alphas and

E>10

10>E

20 key

heavier nuclei

Mev/nucleon

> 0.02 Mev/nucleon (1)

>E >I ev

Electrons

E > 0.5 Bey

0.5 Bey> E>I Mev
1 >E >0.02Mev (1)""

20kev>E >1 ev

Neutrons

E > 1 Mev

1 >E >0.001 Mev

1 kev > E

Photons (2)

E > 50 Mev

50>E>3 Mev "3"
3>E >0.3Mev ( )

300 > E > 100 kev

100 > E > 10 key

10key >E >100ev

Flux at detectors

(particles/cm 2-sec)

3 x 10 -3

10-2

106/decade of energy

-4
3x10

10-3

106/decade of energy

10-4

10-3

10-3

106/decade of energy

10-2

10-2
10 -2

10-6
-3

5x10

10-3

-I

10_ 1
10
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(1)These values ,_re estimates based on available data.

(2)This includes the electron bremsstrahlung produced in all parts of the space-

cr_t and in any detector.

(3)With no resolvable peak containing more than 5 percent of this value.

These are not necessarily Lander instruments, but were presented as being represent-

ative of the radiation levels that would have to be provided for. A discussion of design

approaches to limit the radiation levels seen by the payload is presented in Section 8.3.
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4.2 COMMUNICATION SUBSYSTEM

4.2. I. SUMMARY

A. (;enernl

l.ander communication subsystems are defined in this section for the support of mis-

sions in which the scientific payload weight is assumed to vary over a range from 250

to 5000 pounds.

Since the communication requirements of an unknown payload cannot be specified directly,

a basic subsystem configuration which could provide all the expected functions for a

Lander payload was first established. The significant parameter values of the trans-

mission subsystem were then determined as functions of data rate. In addition, the

sizes m_d weights of the basic units of the command and data handling subsystems were

estimated as functions of data rate based on the results of previous studies. To relate

these results to the possible transmission requirements of the payloads, three data

rates were assumed as functions of payload size. These rates represent the expected

nominal, maximum, and miriimum values which might be required for each payload.

With this information, the significant subsystem parameters were then determined as

functions of payload size and tabulated for five payload sizes (250, 500, 1000, 2500

and 5000 pounds).

The components and techniques recommended for these subsystems are in most cases

identical to those recommended in the previous GE-MSD Voyager system study reports.

Since the primary intent of the present study is to define the expected gross variations

of subsystem parameter values as a function of payload requirements, most of the

design details given in the above references are not reiterated here.

B. Subsystem Characteristics

The communication subsystem comprises a deep space transmission subsystem for all

communications with Earth, a command and computer subsystem for control of all

vehicle subsystems, and a data processing and storage subsystem for collection of data

from all science and engineering sensors. A general block diagram of the overall sub-

system is given in Figure 4.2-10.

The nominal, maximum, and minimum data rate requirement assumed as functions of

payload size are shown in Figure 4.2-1. Subsystem designs which meet these require-

ments (as described in subsequent sections} result in command rates as shown in Figure

4.2-2. In each case the rates are calculated for a transmission range of 1.4 AU (210-

million kilometers) and include an eight-db margin. Weights and volumes of the cor-

responding subsystems are given in Figures 4.2-3 and 4.2-4, respectively. Table

4.2-1 is a final tabulation of the significant parameter values for the 15 selected sub-

systems (minimum, nominal, and maximum data rates for each of five payload weights).
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C. Problem Areas

The problem areas associated with the Landers described here include those listed

in the GE-MSD Titan IIIC Voyager study report:

1. Life testing and possible development of the Litton electrostatically focused

klystrons in the 20 to 50 watt region.

2. Development of Raytheon amplitrons in the 150 watt region.

3. Elimination of breakdown for descent-phase antenna (150 watts transmitted).

4. Determination of best modulation and detection techniques for descent-

phase direct link.

5. Development of sterilizable tape recorders.

In addition, the use of the larger Saturn V Landers require the solution of problems

associated with transmission of up to 160 watts from the planet surface. These in-

clude the development of klystron power amplifiers at this level and the elimination
of antenna breakdown.

Although the antenna parameter values for all Landers given in this report are for

parabolic reflectors with single feeds, array antennas will probably be required to

reduce the possibility of breakdown (see Section 4.2.4). The concentration of rad-

iated power can be reduced to less than two watts per radiating element by this

method. Breakdown in the feed system, however, will require additional investiga-
tion.

4.2.2 SUBSYSTEM ANALYSIS

A. Power/Antenna Tradeoff

Since the weights associated with the size of the antenna and the amount of radiated

power for the prime telemetry link are the most significant in the communication

subsystem, a reasonable relationship between the two must be specified. This re-

lationship, however, should also take into account other significant factors such as

the availability and cost of radioisotopes for generation of the power and the complex-

ity and associated decrease of reliability expected in an accurate antenna pointing

system. Because of the inability to include all such factors (many of which have

values that are unknown or are subjective in nature at the present time), a trade-

off analysis is given here which considers only the weight of the system. A criterion

based on this analysis and considering the factors mentioned above is then selected

to obtain the power/antenna relationship utilized in the given designs.

The following ground rules are used in the analysis:

. The weights which vary with transmitted power are those of the power

source, thermal control subsystem, and power amplifier.
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o The weights which vary with the antenna size are those of the reflector,

feed, drive mechanism, and supporting structure.

3. The power amplifier weight is for two amplifiers, one of which is redundant.

4. Amplifier efficiency is assumed to be 26.4 percent {tube efficiency equals

33 percent and high-voltage power supply efficiency equals 80 percent).

5. Antenna gain is equivalent to that of a dish with 55-percent aperture effi-

ciency.

sin2x
6. 2 antenna pattern is assumed.

x

7. A transmission range of 1.4 AU and a link margin of 8 db have been assumed.

The general weight relationships utilized are

and _ wa = K1 D2 t

where:

W = K2 Pt

K 1

= variable weight associated with dish diameter (pounds)

= 2.0 pounds/square foot (Appendix D)

D = dish diameter (feet)

AW
P

K 2

= variable weight associated with transmitted power (pounds)

= 4.1 pounds/watt (Appendix D)

Pt = transmitted power (watts)

then the total variable weight is:

Wt = K1 D2 +K2 Pt

The above is to be minimized under the constraint:

2
2 sin (K 4 8 eD)

Rb = K3 Pt D
(K4 _ eD) 2

4-10



I
I
I
i
I

i
1
!

!
I
I
I
1

I
!
I
I

!

!,|

or,

¢ -= Rb - K3 Pt

2
sin (K 4 0eD )

D 2

(K 4 BED)2

= 0

where:

K 3 = 3.25 bits/watt-ft 2 (Appendix D)

K 4 = 0° 091 (Appendix D)

8 = pointing error off boresight (degrees)
e

R b = data rate (bits per second)

The optimum combination of dish diameter and transmitted power can be determined

from the solution of the equations:

and,

b
W t,_ _ ¢

+ k -0
_D _D

b (A Wt) _ ¢
+ k - 0

b Pt _ Pt

where X is the Lagrange multiplier.

These result in:

2 K1D + k I-K3 PtD

K 2 + k I K3 D2

Eliminating )k gives:

K 1 D2 tan (K4_eD)
Pt -

K 2 (K48e D)

sin(2K4 eD)]

(K48eD) J

sin2 (K48e_____D)]

(K4Oe D)2 J

= 0

= 0

This then, is the relationship between dish size and power which results in minimum

weight. Under this condition the weight and bit rate in terms of dish size are:
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and,

D2 [ tan (K40eDq
_Wt = Ko+K1 _.1+ K4_-'e-D j

2

K 1 K 3 D4 tan (K40eD) sin (K4_ e D)
R b -

K 2 K4_)eD (K40eD)2

Substituting the values of the constants (determined in Appendix D) into the last

three equations yields the following relationships:

= 0°49 D 2
tan (0.091 O D)

e

O. 091 0 D
e

Pt

[ oo91_oD)]tan (0.091 0 e

W t = 2.0 D 2 1 +
e

2
tan O. 091 0 D sin

R b = 1.58 D 4 e0.091 _ D
e

(0.091 @eD)

(0.091 @ D) 2
e

These equations then give the results plotted in Figures 4.2-5, 4.2-6, and 4.2-7.
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To obtain a direct relationship betweenantennasize andtransmitted power, the
antcnnapointing error must be specified. It is apparent from the results that point-
ing error can result in a significant waste of power andweight if too large. Reduc-
tion of the pointing error, however, results in additional complexity, reduced re-
liability, and addedstructural weight (pointing error is independentof weight in the
equations). The final criterion chosenwas that the pointing error and dish diameter
be related by @e = 11.4/D as shown in Figure 4.2-8. The resulting dish diameter
and transmitted power combinations are then as shown in Figure 4.2-9 as functions

of data rate.

The above antenna pointing criterion leads to less stringent pointing requirements

for the smaller vehicles in which reduced complexity is desirable. It also leads to

a higher dish-to-power ratio than that associated with minimum weight because it
has been inserted into the results of the analysis rather than into the original equa-

tions. The original equations are based on a pointing error independent of dish

diameter. This higher dish-to-power ratio is desirable because of the problems

associated with cost and availability of RTG power. (As noted in Appendix D, the

weights associated with power and antenna are not necessarily the same as those

determined elsewhere in this report. They were obtained from estimates made

earlier in the study and a final iteration was not made. Final estimates indicate

that the weights associated with power are less than the values used in the analysis.

This means that the dish-to-power ratio determined here is higher than that for

minimum weight; however, such an overbalance is desirable to offset the cost and

scarcity of RTG power. )

B. Link Calculations

Link calculations are given in Table 4.2-2. Both the weakest and strongest prime

links being considered for telemetry and command are included. The parameter

values utilized in the calculations are given in Table 4.2-3. In addition, the follow-

ing should be noted:

i. Transmission range is 1 AU (150-million kilometers) in all calculations.

2. The gain, pointing loss, and polarization loss given for the Lander descent-

phase antenna and the backup antenna are based on reception with a linearly

polarized antenna.

3. The APC noise bandwidths can be increased for faster acquisition in links

where the margin allows and where the modulating sidebands are sufficiently

removed from the vicinityof the carrier.

ST

4. The values of _ are determined as follows:

Telemetry. links to Earth (Pe = i.4 X 10 -3)

Theoretical = 6.5 db

Coding Gain = 1.5 db

4-14

I

I

I

I

I

I

I

I



I

I

I

I

I
I

I
I

I
I

I

I

I

I

I

I

I
I

_1

I0

4.0

w
c_

2.0
n-
O
_r
rr
tU

(.9
z 1,0

I-
z

z
z
_ 0.4

z

8 e : P01NTI

8e _11.4D

\
NG ERROR

0,2

2 4 I0 20 4.0 I00

DISH DIAMETER (FT)

Figure 4. 2-8 Antenna Pointing Error Versus Dish Diameter

I000

IJ,.

Iz:
LI.I
p..
ILl
:E

C_

"r
(1)

Z
<It

I-

I.i.I

0

I00

I0

/

_,o_

_00 I000 I0,000 I00,000

DATA RATE (BITS PER SECOND)

Figure 4o 2-9 Power and Antenna Size Versus Data Rate

4-15



TABLE 4.2-2 LINK CALCULATIONS

Link

Purpose

Parameter

1 Total Transmitter Power (dbnQ

la

2 Transmitting Circuit Loss

3 Transmitting Antenna Gain

4 Transmitting Antenna

Pointing Loss

Space Loss

L-E TLM

(Prime)

(Min. Sys. )

42.3

-2.0

27.7

-1.6

ib

L-E TLM

(Prime)

(Max. Sys. )

52.0

-2.0

37.6

-1.6

L-E TLM

(Backup)

51.7

-2.0

2.0

-2.0

5 -263.2 -263.2 -263.2

6 Polarization Loss - 0.0

7 Receiving Antenna Gain

8 Receiving Antenna

Pointing Loss

9 Receiving Circuit Loss

Net Circuit Loss

61.0

-0.2

61.0

-0.2

61.0

-0.2

10 -178.3 -168.4 -204.2

11 Total Received Power -136.0 -116.4 -152.7

12 -183.2 -183.2 -183.2Receiver Noise Spectral

Density (N/B)

Carrier Modulation Loss13 -6.0 -6.0 -3.0

14 Received Carrier Power -142.0 -122.4 -155.7

15 Carrier APC Noise BW 10.8

0.0

-172.4

30.4

2.0

-170.4

28.4

6.0

-166.4

24.4

-i. 3

-137.3

32.0

6.0

-145.2

7.9

-1.3

-137.3

-3.0

CAIIRIER PERFORMANCE

TRACKING (one-way)

Threshold SNR in 2BLQ16

17 Threshold Carrier Power

18 Performance Margin

CARRIER PERFORMANCE

TRACKING (two-way)

19 Threshold SNR in 2Bl,fl

20 Threshold Carrier Power

21 Performance Margin

CARRIER PERFORMANCE

TELEMETRY AND COMMAND

22 Threshold SNR in 2BIA _)

23 Threshold Carrier Power

24 Performance Margin

DATA CItANNEL

25 Modulation Loss

10.8

0.0

-172.4

50.0

2.0

-170.4

48.0

6.0

-160.4

44.0

-i. 3

-117.7

51.5

6.0

-125.7

8.0

-1.3

-117.7

-3.0

26 Received Data Subcarrier Power

27 Bit Rate (l/T)

28 Required ST/N/B

29 Threshold Subcarricr Power

30 Performance Margin

SYNC _IANNEL

31 Modulation Loss

32 lleccivcr SYNC Subcarrier Power

33 SYNC APC Noise BW

10.8

0.0

-172.4

16.7

2.0

-170.4

14.7

6.0

-166.4

10.7

-3.0

-155.7

6.0

8.0

-169.2

13.5

-3.0

-155.7

-3.0

L-E TLM

(Descent)

51.7

-2.0

2.0

-2.0

-263.2

0.0

61.0

-0.2

-204.2

-152.7

-183.2

-3.0

-155.7

10.8

6.0

-166.4

10.7

-3.0

-155. 7

6.0

8.0

-169.2

13.5

-3.0

-155.7

-3, 0

4a

E-L Command

(Prime)

(Min. Sys. )

4b

E-L Command

(Prime)

(Max. Sys. )

E-L Command

(Backup)

70.0 70.0 80.0

-0.5 -0.5 -0.5

51.0 51.0 51.0

-262.5 -262.5 -262.5

27.0 36.9 2.0

-1.3 -1.3 -2.0

-2.0 -2.0 -2.0

-188.3 -178.4 -214.0

-118.3 -108, 4 -134.0

-164. 0 -164.0 -164.0

-4.4 -4.4 -4.4

-122.7 -112.8 -138.4

13.0 13.0 10.0

3.0

-148.0

25.3

6.0
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losses = _ 1.0 db (strong carrier)Detection
3.0 db (thresholding carrier)

6.0 db (strong carrier)Total -- 8.0 db (thresholding carrier)

Command links from Earth (Pe = 10 -5)

Theoretical = 9.7 db

Detection Loss = 8.8 db

Total = 18.5 db

The above total has been given by Motorola for their double-channel de-

tector operating at a rate of one bit per second. This value is expected

to be conservative for a single-channel detector, especially at higher bit

rates.

4.2.3 SUBSYSTEM DESIGN

A. Functional Description

A functional block diagram of the Lander communication subsystem is shown in

Figure 4.2-10. The overall subsystem comprises the deep space transmission

subsystem, the command and computer subsystem, and the data processing and

storage subsystem. Detailed diagrams and descriptions of these subsystems and

most of their major components are given in the previous GE-MSD Voyager Study

reports.

The subsystems as defined here provide the functions summarized below:

1. Deep Space Transmission Subsystem

a. Accept a serial digitalwaveform containing both data and bit-sync

information from the data processing and storage subsystem.

b. Phase-modulate an RF carrier with the composite signal and transmit

itto Earth.

c. Receive command data on a phase-modulated RF carrier from Earth.

d. Demodulate the command signals.

e. Provide the demodulated data along with bit-sync pulses and a bit-sync

lock signal to the command and computer subsystem.

f. Accept mode change commands from the command and computer sub-

system.

g. Coherently translate the frequency and phase of the received RF car-

rier by a ratio of 240/221 to obtain the transmitted frequency.

h. Provide an auxiliary stable frequency source which controls the trans-

mitted frequency when no signals are being received from Earth.
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(Functions g and h are included for possible doppler experiments on the

surface. The subsystem does not operate during the transit phase. )

2. Data Processing and Storage Subsystem

a. Sample selected groups of scientific and diagnostic data inputs at any

one of several possible rates.

b. Digitize analog inputs.

c. Multiplex data into identified frames.

d. Store data if required.

e. Read out real-time and stored data for transmission at a commanded

rate.

f. Code data for error control.

g. Combine coded data with a PN code for bit sync.

3. Command and Computer Subsystem

a. Receive and verify command words, prepare the word format for use

by the subsystem and determine ff the command is to be stored or

operated upon directly.

b. Store command words for later use by the vehicle.

c. Generate and supply to the subsystems, timing pulses of required

repetition rates and provide a present time clock for the timing and
execution of stored commands.

d. Search the memory and retain the time tag and command for the next
event to be executed.

e. Provide magnitude information to designated elements in the control

system and provide decoded output with sufficient drive capability to

operate command relays.

f. Provide computation capability if required.

g. Provide power conversion for selected subsystem components.

Although the size of the subsystems is assumed to vary with the transmitted data

rate requirements, the basic functions listed above will remain the same for all

Landers. Only the number and type of data inputs and command outputs, the com-

mand and data storage volume, and the transmitted power and antenna gain will be

different for each Lander size. Also, the number of these functions to be performed

during the transit phase will vary depending on the capability of the associated Bus

communication subsystems. The Lander RF components are not required during the

transit phase until immediately before entry. The data processing and command
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subsystems, however, will be used to collect diagnostic data during this phase as

dh'ected by the controlling Bus subsystem. The subsystems of the 6200 and 13,100-

pound Landers will also handle all command and data processing functions of the

associated Individual Buses, including the storage and read out of TV approach

guidance data and the storage and issuance of the guidance commands. These func-

tions are provided by the Bus subsystems for the other Lander sizes. All com-

munication functions are provided by the individual Landers subsequent to the approach

guidance phase and final disconnect from the associated Bus.

After separation from the Bus and prior to surface impact, each Lander transmits

through a 150-watt amplifier chain and antenna. Continuous transmission cannot be

sustained by the smaller Landers because of power limitations; however, the avail-

able period in all cases is much greater than that required for the atmosphere-des-

cent phase. The antenna used for this phase is an encapsulated turnstile giving at

least unity gain over a 150-degree angle. The Lander attitude and trajectory is

constrained such that the Earth is always included in this portion of the pattern.

Antenna encapsulation precludes breakdown in the Martian atmosphere at the high

radiated power level (approximately 100 watts including losses prior to the antenna).

Approximately four bits per second can be transmitted through this link.

After Lander impact, a steerable antenna is erected for the prime link. The antenna

size and transmitter power of this link for each Lander is given in Table 4.2-1.

A second encapsulated turnstile antenna is used in the backup link.

All transmitted data is digital and is combined with a pseudo-noise (PN) sequence

on a square-wave subcarrier prior to transmission. This composite signal is used

at the receiver to derive bit sync. In addition, it moves the sidebands of the trans-

mitted signal away from the RF carrier so that an uncluttered carrier will be avail-

able for tracking and synchronous detection.

In the normal command mode, commands are transmitted from the Earth using the

85-foot DSIF antennas and 10-kw transmitters, and reception is through the high-

gain antenna. The associated transponder receiver has a 10-db noise figure and a

20 cps phase-lock-loop. As a backup mode, reception is through the omni, and the

100-kw transmitters are required at the longer ranges. The receiver bandwidth is

also reduced to 10 cps to increase its sensitivity.

The command word unit accepts digital data and associated sync pulses from the

command detector when a lock signal is received; otherwise, it will not accept or

act on any data. The command word unit interprets the word-start symbols, de-

termines its destination, verifies the validity of the received data and, if accepted,

delivers real-time data to the command execution and computation unit and stored

data to the memory unit.

4-21



The command execution and computation unit executes all real-time commands upon

reception. It also selects the command in the memory unit to be executed next and

holds it in a register until its time label coincides with that of the spacecraft clock.

It then executes the command and selects the next command from the memory to be

executed and holds it in the register until executed. This process is repeated until

all commands in the memory have been executed. Such a technique minimizes the

number of times the memory must be interrogated and therefore minimizes the proba-

bility of producing an error in the process. A parity check is also made before a

stored command is executed, thereby further reducing the probability of initiating an

incorrect command. Both quantitative and discrete (on-off) commands are initiated

by the command execution and computation unit. This unit in conjunction with the

memory unit forms a special-purpose computer which can be used to up-date pro-

gram time tags and also can be used as required for the direction of scientific ex-

periments based on real-time data being obtained.

The clock is the central time reference for the spacecraft. It provides a time label

and timing pulses for all subsystems as required. The time label is used to deter-
mine the time at which a command is to be executed and also is inserted into each

frame of data being taken by the data processing unit.

The data processing and storage subsystem has four major functions:

1. Digitize and multiplex data

2. Store data

3. Encode data for error control

4. Generate bit sync signal

The first function applies only to the narrow-band data sensors as used in most cases

for both science and engineering data. Wide-band data such as TV is encoded by an

A/D encoder within the TV subsystem and separate from that used for the narrow-

band data. Multiplexing of TV data with narrow-band data is directed by the command

subsystem. The data format and rate are also determined by the command sub-

system. The format determines which sensors are sampled in a particular frame.
The data collection rate will be commanded from Earth, based on the anticipated

rate of change of sensor outputs and will be constrained by the rate at which data can

be sent to Earth over an available time period. The narrow-band data can be either

stored or transmitted directly.

The storage devices utilized are a plated-wire buffer storage unit and magnetic tape

recorders. The buffer storage unit is used for the storage of low-rate data and as

a buffer between the tape recorders and the error correction encoder. The encoder

requires that a burst of 45 bits be read in at the transmitted "digit" rate and that no

data be read in during the subsequent period in which 28 check bits are added (as

defined here, the "digit" rate is 73/45 times the effective bit rate). Data is there-

fore accepted continuously by the buffer from the tape recorders at the effective

transmitted bit rate and supplied to the encoder in bursts at the "digit" rate.
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The magnetic tape recorder unit is used for storage of bulk data from the buffer unit

and the high-rate sensors. Each recorder has multiple input rates to satisfy sensor

and buffer rate requirements, and has multiple output rates compatible with Lander

transmission capability variations due to changes in transmission range and sub-

system parameters. All output rates are phase locked with the spacecraft clock.

The error control encoder, a unit of the data processing and storage subsystem,

accepts bursts of 45 bits as described previously and computes and appends 28 check

bits in a cyclical register. Its output to the bit sync generator is then a serial string

of 73 bits. Approximately 1.5-db reduction of required transmitter power is accom-

plished by the error control encoding.

The bit sync generator combines a 511-bit PN sequence on a square-wave subcar-

rier with the 73 data bits. This allows seven PN bits per data bit. At the receiver,

the subcarrier and PN sequence are cross-correlated with identical locally gener-

ated waveforms. When the two PN sequences are in phase or correlated, the PN

generator in the receiver provides outputs indicating the beginning of each data bit

period and the beginning of each group of 73 bits. The former output allows accu-

rate detection of each bit in an integrate-and-dump circuit, while the latter resets

the error control decoder each time a group of 73 bits is decoded. All clock pulses

required for the synchronous operation of the tape recorder, buffer, data encoder,

and bit sync generator are derived in the bit-sync generator unit.

The composite signal from the bit sync generator is a two-level waveform. This

signal is used to phase-modulate the carrier generated in the transmitter portion of

the transponder. The carrier is shifted, therefore, between two values of phase

(+- 60 degrees utilized in the prime mode) resulting in a spectrum with a discrete

carrier frequency and sidebands containing the data and synchronization information.

The sidebands are sufficiently removed in frequency from the carrier so that the

spectrum is relatively uncluttered near the carrier as required for tracking.

B. Performance Characteristics

The limiting data transmission and command reception capabilities of the prime links

of the Landers as functions of transmission range are indicated in Figure 4.2-11.

Only the rates for the largest and smallest systems are shown. All other system
rates fall within these limits. An eight-db margin is included in all links. Each

system should be designed for the transmission and reception (if required} of multi-

ple rates to take advantage of the shorter transmission ranges encountered. The

capabilities of the prime links of all systems are shown in Figures 4.2-1 and 4.2-2

for a range of 1.4 AU (210 million kilometers) including a margin of eight db.

The backup telemetry and command capabilities of all Landers are identical (com-

mand rate = 0. 5 bits/sec and telemetry rate = 4.0 bits/sec}. Figure 4.2-12 shows

the margin (telemetry carrier channel, command carrier and data channels} in each

link as a function of range.
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C. Size, Weight, and Power Estimates

Components of the Lander communication subsystems can be divided into two groups:

. Basic components which do not change over the range of subsystem

capability.

2. Components with size, weight and power varying with subsystem capability.

Size, weight, and power estimates for the basic components are given in Table

4.2-4 (components 1 through 8). Size and weight estimates for the remaining com-

ponents and units are given as functions of transmitted data rate in Figures 4.2-13

through 4.2-18. In addition, Figure 4.2-9 shows the transmitted power and prime

power requirements of the klystron amplifiers. No power estimates are given in

Table 4. 2-4 for the data processing and storage subsystem and the command and

computer subsystem since the requirements can change from one mode of opera-

tion to another. The power subsystem, however, has been designed to satisfy the

requirements anticipated during a typical sequence of events in a Martian day. With

all electronics and one recorder operating simultaneously, the total power require-

ment of both subsystems would range from approximately 20 watts for the smallest

Lander to 60 watts for the largest Lander.

Overall subsystem weights and volumes are given in Figures 4.2-19 and 4.2-20

as functions of data rate. Subsystem weight versus scientific payload weight is

shown in Section 4.2.1 utilizing the relationship between data rate and payload weight

given in that section.

All weights and volumes given are those of the components and do not include that

of cabling, harnessing, and compartment structure. These are included in the

overall weights given in Section 5.

4.2.4 ADDITIONAL CONSIDERATIONS

A. Simultaneous Tracking of Multiple Vehicles

Some of the system concepts described in this report require the simultaneous two-

way doppler tracking of multiple vehicles. The vehicles are all contained within a

small volume of space and cannot be resolved by an Earth antenna; therefore, fre-

quency separation is required between the signals received from the vehicles. Since

their radial velocities can be nearly identical, doppler separation alone is not ade-

quate.

Under the present ground rules, in which at least two 85-foot dishes and one 210-

foot dish are within line-of-sight of the vehicles at all times, frequency separation

can be provided for two vehicles by transmitting different frequencies from the two

85-foot dishes (assuming no transmission capability from the 210-foot dish). When
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TABLE 4.2-4. SIZE, WEIGHT, AND POWER ESTIMATES (LANDERS)

Unit Unit Unit

Component No. Size Weight Power

(Ib) (watts)

4-26

DEEP SPACE TRANS-

MISSION SUBSYSTEM

1. Diplexer

2. Encapsulated Turn-
stile

3. Transponder

4. Klystron Amplifier

(25w)

5. Amplitron Amplifier

(130w)

6. Command Detector

7. RF Switch

8. Isolator and Load

9. High Gain Antenna

10. Klystron Amplifier

(Figure 4.2-9)

DATA PROCESSING

AND STORAGE

SU BS YS T E M

2 6x3.25x2 in. 1.0

2 5-in, Dia. x 5.0
7.5 in,

3
2 184 in. 5.4

3
2 130 in. 8.0

3
2 280 in. 13.0

3
2 4x4x5 in. 3.0

3
1 2x2x2 in. 1.0

4 10 in. 3 0.75

1 (Figure 4.2-9) (Figure 4.2-13)

2 (Figure 4.2-16) (Figure 4.2-13)

2.0

94.0

330.0

1.75

(Figure 4.2-9)

11. Data Processing
Unit

12. Buffer Storage Unit

13. Tape Storage Unit

14.

15.

(Figure 4.2-17) (Figure 4.2-14)

COMMAND AND

COMPUTER

SUBSYSTEM

Command and Com-

puter Equip.
Power Conversion

and Control

(Figure 4.2-18) (Figure 4.2-15)
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more than two vehicles must be tracked, it appears that redesign of the trans-

ponder to obtain different frequency conversion ratios offers the best solution.

One redesign, when used with the present design and with two Earth transmitters,

will allow tracking of four vehicles, the maximum number considered in this report.

B. Variation of Lander Transmission Capability with Time

Figure 4.2-21 indicates the typical variation of data transmission capability to be

expected as a function of time during a Martian year. The capability shown is that

of the system designed for 70,000 bits per second at 1.4 AU. An arbitrary start-

ing date has been chosen; however, typical encounter for a Type I trajectory would

occur a few days prior to the time shown for the design data rate.
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When the sun is between the Earth and Mars, both telemetry and command blackout

will occur. The duration of this blackout has been estimated by Victor, et. al. (1),

to be in the order of ten to twenty days (210-foot dish; system temperature = 25°K).

Theoretical data presented by Giddis(2) indicate that the period could be in the order

(1) Victor, W. K. ; Titsworth, Ro ; Rectin, E. ; "Telecommunication Aspects of a

Manned Mars Mission" JPL Technical Report No. 32-501, August 20, 1963.

(2) Giddis, A.R. ; "Influence of External Noise on Antenna Temperature" Micro-

waves_ June 1964.
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of two or three days for a quiet sun. In either case, blackout will not result in a

significant loss of data. The longer period cited, however, might not be tolerable

if it occurred in the very early part of a Lander mission corresponding to the utiliza-

tion of a Type II trajectory. Such an ecnounter time would also be undesirable be-

cause of the loss of margin in the descent and backup links due to increased noise

and the significantly greater range.

Command blackout might also occur when the Earth is between Mars and the sun.

However, the considerably decreased transmission range at that time should reduce

the blackout period to an insignificant duration. In fact, complete blackout can be

prevented by reducing the command rate during this period.

C. Array Antennas

All high-gain antenna designs described previously for the Landers are focus-fed

parabolic dishes. The power radiated ranges from about 20 to 160 watts. Prelimi-

nary breakdown data presently available indicate that breakdown might occur at the

lower levels and will definitelyoccur at the higher levels unless special design tech-

niques are utilizedto prevent it. Encapsulation or pressurization of the feed can

be used for thispurpose. A method which shows more promise, however, is that

of using an array antenna in which the power radiated from each element is signifi-

cantly less than the totalpower. Arrays designed for the given applications can re-

sult in less than 2 watts of radiated power per element.

Since the design of a dish antenna is much simpler than that of an array, the former

is still recommended where breakdown can be easily prevented. However, an

array has other unique properties which, although not specified as requirements in

this report, should be considered in any final system design trade off. It has the

natural capability of RF tracking by monopulse techniques by adding the necessary

power division and sum and difference networks. Also, it lends itself naturally to

various beamwidth modes by altering the number of active radiating elements. By

exhibiting higher aperture efficiency than a dish, an array has a smaller area for

the same gain and therefore can be packaged more efficiently. Its form can also be
altered.

The overall efficiency of an array is higher than that of a dish because spillover

and aperture blockage losses associated with a focus-fed parabolic dish do not occur.

While for a well-designed, low sidelobe parabolic dish antenna an overall efficiency

of 65 percent can be achieved, this overall efficiency for an array antenna can be at

least 80 percent, representing a gain difference of about 1 db for any given aperture

size. It should be noted that the overall efficiency used here includes losses due to

tolerances and resulting phase errors as well as losses occurring in the feed system

(transmission lines, power dividers).

For a given gain, on the other hand, the array antenna aperture can be made smaller

than for a parabolic dish, resulting in smaller overall size. The weight of the two
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antennas is probably very s imilar  since the inherent stiffness of the parabolic dish 
must be provided on the flat a r r ay  by additional thickness. An overall weight benefit 
is derived, however, from the fact that the center of gravity on an a r r a y  antenna is 
accessible and, therefore, minimum scanning and tracking power is required. 

The most efficient form of an a r r ay  must be determined from many viewpoints, such 
as weight, available packaging volume, available drive power, number of radiating 
elements versus length of elements, complexity and reliability of feed network, re- 
quirements for RF  tracking and multiple beam modes. It can vary from a flat two- 
dimensional a r ray  using slots o r  horns as radiating elements to a three-dimensional 
volume type antenna where dipoles with ref lectors  or  longer endfire s t ructures  can 
be used as the radiating elements. 

An example of an efficient a r ray  antenna is the Apollo High Gain Antenna under de- 
velopment a t  GE-MSD. The antenna, shown in Figure 4.2-22, consists of an a r r ay  
of 18 circularly polarized endlire elements. Each element is three wavelengths long 
( 1 G  inches at 2295 Mc). The elements a r e  fed by coaxial cables from stripline power 
dividers that allow the selection of three different beams. 

Figure 4.2-22 GE-MSD Apollo High Gain Antenna 

The measured element gain is 15. G db above isotropic. The a r r ay  gain (18 x element 
gain) is therefore estimated a t  12.  5 + 15. G = 28.1 db. 
coaxial feed cables,  power dividers and R F  switches is estimated at 1 .6  db, result- 
ing in a net gain of 26.5 db. 

The total power loss due to 
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This gain is obtainedfrom a circular area of D = 38-dlameter. The efficiency
calculates then from G = ??(?rD/)_)-2as

G 446 446

efficiency 77- ('r_)2_ - _38 )2 - 539 _ 83%

The weight of this antenna including the yoke (but not including gimbal and support

boom system) is 17 pounds.

The aperture diameters of array and parabolic antennas as well as the minimum and

maximum gains for antennas under consideration in the study are listed below for

comparison purposes:

Gain: 28.0 db 37.6 db

Dish Dia. (55% efficiency): 4.6 ft

Array Dia. (80% efficiency): 3.8 ft

14.0 ft

11.6 ft
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4.3 ELECTRICAL POWER SUBSYSTEM

The requirements placed on the electrical power subsystem are:

1. Provide total power of 100 to 3000 watts during 10 hours of each day when the

communication subsystem and scientific payload are both operating.

e The power profile to be satisfied is that shown in Figure 4.3-1, or its

equivalent. In this figure, 100 percent is that power required by simul-

taneous operation of the communication subsystem, scientific payload, and

thermal control subsystem. A peak at 175 percent power for 1 1/2 hours

is provided for such things as operation of drills.

3. The lifetime required is up to one year in transit plus one to two years on
the surface of Mars.

4. The system will be flown in 1971 to 1975 and should be based on 1965 state-
of-the -art.

5. Minimum weight and volume and compatibility with other subsystems is of
prime importance.

The system chosen to satisfy these requirements is a radioisotope thermoelectric

generator (RTG) with associated power conditioning and distribution equipment, and

nickel-cadmium batteries for energy storage. Minimum weight and maximum

reliability are achieved by designing the RTG with sufficient capacity to satisfy the

simultaneous demands of the scientific payload, the communication subsystem, and

the thermal control subsystem. The battery then must supply only the portion of the

175 percent peak load that is in excess of the RTG capacity.

A schematic of the power supply is shown in Figure 4.3-2. The efficiencies assumed

for the performance of each of the components is shown. The converter regulator

controls the voltage level at the bus. Battery charge rate is controlled as described

in Section 4.3.5. A power control unit is provided for switching of loads, and a line

contactor is provided for ground support power and for testing the electrical system
without the RTG.

4.3.1 EVALUATION OF ELECTRICAL GENERATING DEVICES

Both nuclear and solar energy were considered for generating electrical power.

Use of silicon solar cells to generate the required power has two primary advantages;
1) no nuclear radiation is produced to possibly generate interference with the scientific

payload and 2) the problem of heat removal from the radioisotope source during the

transit phase is eliminated. Against these advantages, the disadvantages are as
follows:
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. The solar array must be packaged within the Lander to enter the atmosphere.

The complexity of deploying and orienting this large array - up to 600 square

feet or greater - is quite severe.

. There is considerable uncertainty regarding the solar energy incident on the

Martian surface in view of dust clouds, etc. Dust coating the cells is

another matter for concern.

3. The energy storage requirements are increased significantly and the mission

is now more dependent on reliable operation of the storage elements.

4. The large solar array may interfere with viewing requirements of scientific

television or Earth-pointing antennas.

5. A separate power system is required for the transit phase.

6. Maintaining the vehicle temperature through the Martian night with minimum

power dissipation is much more difficult.

In view of the problems and uncertainties associated with solar cells, nuclear energy

was selected for the prime power souce.

The nuclear power devices that have been evaluated are listed in Table 4.3-1. The

radioisotope thermoelectric generator and the nuclear reactor systems, the latter

of which will require startup and operation only when the Lander is on the surface

of Mars, can satisfy the lifetime requirement. However, an additional electrical

power supply would be required to produce power during transit when a nuclear
reactor is utilized.

The cascaded radioisotope thermoelectric generator (RTG) is very similar to the

well known "RTG" except that two different thermoelectric materials are combined.

This permits operation over a wider temperature range and can result in higher
efficiencies. This is discussed in some detail in Sections 4.3.2 and 4.3.3.

The radiosiotope thermionic generator has a similar configuration to the cascaded

thermoelectric generator but has slightly greater efficiencies. However, maximum

temperatures are increased by 600°F to 1000°F. At present, thermionic converters

have been developed that exhibited "continuous" life operation greater than 3000 hours.

In addition, an isotope thermionic power supply is being developed by the USAEC to

produce 12 watts of electrical power and operate for a duration of several months.

A high temperature fuel capsule technology (_ 2500°F capsule surface temperature)

and an order of magnitude increase in thermionic converter lifetime is required for

this approach to be suitable for the Voyager Lander power supply.
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TABLE 4.3-1. NUCLEAR POWER SUPPLIES

i

f

I

I

I
I
I
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I_' I

I

I
I

I
I

I

I
I

i

SUPPLY

RADIOISOTOPE THERMOELECTRIC (RTG)

CASCADED RTG

RADIOISOTOPE THERMIONICS

RADIOISOTOPE DYNA MIC

NUCLEAR REACTOR

D YNA M IC

* NUCLEAR REACTOR THERMOELECTRIC

MODULE SIZE

(watts)
100-250

200-750

200-750

500-3000

1500-3000

1500-3000

GENER. EFF.

5 to 6

9 to 10

10 to 12

15 to 18

8 to 10

5to6

ADDITIONAL POWER SUPPLY REQUIRED DURING TRANSIT.

The radioisotope dynamic systems that have been investigated include the Brayton

cycles and an organic Rankine cycle. The Brayton cycle utilizes an inert working

fluid such as argon. The Brayton cycle has the advantage of operating at an efficiency

of about 18 percent which can result in great reductions in radioisotope inventory. For

a dynamic system, the Brayton cycle has many inherent advantages such as an inert

single phase working fluid, and simple start-up and restart of system. In addition,

various USAF and NASA contracts support work in radial compressors and turbine,

gas bearings, recuperators, radiators, and performance demonstration units. The

Brayton cycle is most attractive for power levels at the upper end of the 3KW level.

Most design objectives with the Brayton cycle have considered one year of operation
or less.

A Rankine cycle utilizing an organic working fluid can produce relatively high cycle

efficiencies (_ 15 percent) with relatively low turbine inlet temperatures (_ 700°F).

A typical cycle utilizes Dowtherm A as the working fluid with the rotating package

consisting of a single-stage partial admission impulse turbine, main alternator, speed

control alternator and pump on an integral shaft supported by bearings. A 250-watt

rotating package has accumulated more than 1500 hours of testing, but this is still

an order of magnitude less than that required for the Lander power supply.

The nuclear reactor dynamic system considered employs a SNAP-2 reactor, with

a mercury Rankinecycle power conversion loop. The SNAP-2 reactor is an epi-
thermal reactor moderated by zirconium hydride. This type of reactor is attractive

because of its small size, (can produce thermal powers greater than 100 KW) ability

to operate in the temperature range of a mercury Rankine cycle (ll00°F to 1300°F)

and requires a small uranium inventory (a few kilograms). The turbine, alternator,

and mercury pump are mounted on a shaft supported by mercury-lubricated bearings
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within a hermetically sealedpackage. The alternator is a permanent magnet machine
with a stator field coil isolated from the mercury environment. A two stage axial
flow impulse turbine drives the alternator, and a centrifugal boiler feedpump with
a jet pump to boost inlet pressure is used. The reactor and the power conversion
componentshave demonstratedseveral thousandsof hours of ground test experience.

The 500 watt SNAP10Asystem is the only reactor thermoelectric power plant under active
development. Power conversion in the SNAP10Ais accomplishedby Ge-Si thermo-
electric couples mountedbetweenNaK circulating tubes andindividual fins on the
surface of the heat rejection radiator. A schematic of this system is shownin
Figure 4.3-3. In the SNAP-10Asystem there are no moving parts, and NaK pump-
ing is provided by a DC electromagnetic pump that is powered directly by thermo-
electric elements mountedon the pump. Another approach is to incorporate thermo-
electric elements in an intermediate heat exchanger. A secondaryNaK loop would
remove heat from the cold junctions of the thermoelectric elements andreject the
waste heat in the radiator. The heat exchangergenerator offers the advantagethat
it canbe more readily shockmountedto protect the thermoelectric elements from
the landing stresses of the mission.

The radioisotope thermoelectric generator is the only system evaluatedthat has been
utilized in several spaceapplications. A reactor thermoelectric system will undergo
flight test during 1965.

The radioisotope dynamic systems and thermionic systems do not provide a suitable
indication of satisfying the lifetime requirement andwithin the groundrules of the
available information cannotbe selected at present.

The specific weight of the RTG, cascadedRTG, nuclear reactor dynamic system,
andnuclear reactor thermoelectric system are given in Figure 4.3-4. The effect
of shielding is not included. For the RTG, the radioisotopes indicated in Figure
4.3-4 are strontium-90, plutonium-238, and curium-244. The reasons for selection
of these radioisotopes are given in section 4.3.2. For the cascadedRTG the
results are given for a curium-244 fueled unit.

The nuclear reactor systems are difficult to integrate with the vehicle for the
Mars Lander mission. The effect of ground scatter will result in excessive shield-
ing. As indicated in Figure 4.3-5 the shield weight will be greater than 2000lbs.
for a deployednuclear reactor power supply.

4.3.2 RADIOISOTOPETHERMOELECTRICGENERATORSELECTION

The radioisotope thermoelectric generator (RTG) can be designed in modules up to
about250watts. The major disadvantageof the RTG is its limited efficiency. This
is significant with respect to radioisotope cost and availability. The cascadedRTG
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can be utilized to produce powers up to 3KW in modules of up to 750 watts each p_'ovided

the radioisotope fuel compound will be available in sufficient quantities.

The characteristics of various isotopic heat sources are given in Table 4.3-2. hi

order to minimize power fluctuations and ease control requirements, an isotopic

half life of several times the mission life is desirable. The use of promethium - 147,

which is otherwise attractive, does not appear practical because its half life is of

the order of the mission time. The two most attractive radioisotopes from the shield-

ing, power density, and half life standpoints are curium-244 and plutonium-238.

Strontium-90 is attractive only from the standpoint of its low cost and availability.

As is indicated in Section 4.3.7, the cascaded RTG employing curium-244 can

produce the greatest potential electrical power. This is the recommended power

supply for the case where many landers require relatively large electrical power

outputs. For specific payloads where radiation shielding may be significant with

curium-244, plutonium-238 can be utilized as the fuel compound. The utilization

of strontium-90 is very attractive from the cost standpoint. However, the radiation

intensities resulting from strontium-90 are an order of magnitude greater than from

curium-244. For applications, requiring a few Landers of relatively low power out-

put, an RTG without cascaded thermoelements can be alternatively utilized. The

selection of the cascaded radioisotope thermoelectric generator is based on the

considereations summarized in Table 4.3-3.

4.3.3 CASCADED RADIOISOTOPE THERMOELECTRIC GENERATOR

CHARAC TERISTICS

A cascaded RTG consists of several cascaded elements such as the one shown in

Figure 4.3-6. The cascaded element consists of a sealed cartridge of lead tellu-

ride and germanium silicide thermoelectric elements. Devices employing these

thermoelectric materials have operated for more than 10,000 hours at the respect-

ive temperature range considered for the cascaded RTG application. The element

shown in Figure 4.3-6 employs 4 lead telluride and 2 germanium silicide thermo-

electric couples connected electrically in series with the dimensions correspond-

ing to an optimum current times length to area ratio. The lead telluride elements

are thermally in series with the germanium silicide elements, the lead telluride
O.__,

having optimum performance in the temperature range up to about 1150 _ and the
o

germanium silicide having optimum performance above 1150 F. The theoretical

efficiency of telluride and germanium silicide thermoelectric elements are given

as a function of temperature in Figure 4.3-7 and 4.3-8. The cartridges, each

producing about 5 watts, are connected in series to produce about 30 volts.

A typical cascaded RTG is shown in Figure 4.3-9. The radioisotope fuel capsule

is placed inside the cylindrical gap that is surrounded by the cascaded cartridges.

The heat is rejected through direct conduction fins. Beryllium is utilized for the

cold frame ,'rod radiator fins. The cold frame can be made thicker to satisfy the

nuclear radiation shielding, requirement.
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TABLE 4.3-3. SELECTION OF CASCADED RTG

100W - 3 KW Power Capability

3 year life

Reliability

Use of state-of-the-art thermoelectric

Materials and temperatures

Efficient-in reducing radioisotope

inventory

Minimum weight

The characteristics of a 200 watt, 300 watt, and 500 watt cascaded RTG electrical

generator employing curium-244 fuel is given in Table 4.3-4. The number of

RTG's required as a function of payload size and power requirements is shown in

Table 4.3-5. The use of plutonium-238 instead of curium-244 will increase the

weight of the generator because of the increased heat source weights. The approxi-

mate weight of a 200, 300 and 500 watt plutonium-238 fueled cascaded RTG genera-
tor is, respectively, 69, 105, and 188 pounds which is an increase of about 80 to

85 percent with respect to the curium-244 generator.

The design of the cascaded RTG must cmform to the nuclear safety requirements

of nuclear radioisotope power supplies. The criteria of containment of the radio-

isotope under all conditions of re-entry, launch vehicle abort, and sea water sub-

mersion must be met. Intact re-entry is recommended because of the large quantity

of radioisotope utilized. The beryllium cold frame is designed to provide adequate

heat shielding for re-entry. The heat source fuel capsule utilizes energy absorbing

end treatments to satisfy the structural requirements of impact. Sufficient void

volume and clad thickness is provided for containment of the helium generated by
the alpha emitters.

4.3.4 RADIATION CHARACTERISTICS

The radioisotopes, curium-244 and plutoniurn-238 are sources of neutron and gamma
radiation. The radiation produced by a typical 300 watt cascaded RTG is summarized

in Table 4.3-6. The majority of the gamma radiation is below 300 kev for both

plutonium-238 and curium-244. The neutron spectrum consists of spontaneous

fissions which predominate in curium-244 and _-_ reactions which predominate
in plutonium-238.

The data in Table 4.3-6 can be utilized to determine isodose curves such as is

given in Figure 4.3-10. The neutron dose rate curves for the 200, 300 and 500

watt cascaded RTG's employing curium-244 and plutonium-238 are given in Figures

4.3-11and 4.3-12, as a function of shielding thickness. The equivalent gamma dose
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TABLE 4.3-4.

POWER LEVEL

CHARACTERISTICS OF CASCADED RTG -

Curium-244 FUELED

200 watts 300 watts 500 Watts

WEIGHTS (UNSHIELDED}

Heat rejection 11 16.5 46.5

Cold Frame and 5 7 8.85

Insulation

T/E Modules 12.5 18.5 33

Heat Source 8.5 12.7 18

TOTAL (lbs) 37 54.7 106.35

Dimensions (in.) 20x24 D 28x24 D 28x33D

Fin Material Be

Hot Junction Temp.

Cold Junction Temp.

*Efficiency

*Efficiency 10.4% with Cold Junction Temp. of 400°F

TABLE 4.3-5. NUMBER OF RTG UNITS USED

1650°F

500°F

9.4%

SCIENTIFIC

PAYLOAD

_Ibs)

250

5O0

1000

2500

5000

POWER LEVEL

LOW NOMINAL HIGH

NUMBER OF RTG'S

1

1

1

2

3

1

1

2

3

6

1

1

2

4

6

rate shielding curves are given in Figure 4.3-13 and 4.3-14. From the data given

in the above figures, the shielding weight can be determined. Figure 4.3-15 gives the

shield weight requirements of a cascade RTG utilizing curium-244. A beryllium

sh'eld_ integral with the cold frame is utilized. An integrated neutron dose rate of
10 rods an estimated limit for transistorized equipment, is utilized for the

rediation limit. The shielding requirements for a strontuim - 90 device are an order

of magnitude higher as is illustrated in Figure 4.3-16.
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TABLE 4.3-6. 300 WATT (e) CASCADED RTG RADIATION SOURCE

Plutonium-238

Photons

300 kev > E > 100 kev

3Mev>E>0.3Mev

2.92 x 1011

1.98 x 108
photons/sec

photons/sec

Neutrons

- _7 reaction

(continuous spectrum -

Max. energy 5.8 Mev)

Spontaneous fission

3.05 x 108 neutrons/sec

2.07 x 107 neutrons/sec

C urium-244

Photons

300kev>E >100kev

3 Mev > E > 0.3 Mev

10112.06 x photons/sec

4.95 x 1010 photons/sec

Neutrons

- _ reaction

(continuous spectrum-

Max. energy 6.1 Mev)

Spontaneous fission

5.1 x 108 neutrcns/sec

10101.41 x neutrons/sec

4.3.5 SECONDARY BATTERY SYSTEM

The batteries proposed in the electrical system design for the Lander are nickel-

cadmium. The choice of the nickel cadmium rechargeable batteries was dictated

by the number of recharge cycles required of the battery. Nickel cadmium batteries

have a long history of space applications. Present information indicates that these

batteries can be thermally sterilized although the effect of this on life and reliability

must be evaluated.

The performance of sealed, rechargeable nickel cadmium batteries is based on testing

conducted for the Advent system and are somewhat conservative. These are:

1. Battery capacity, including the case but not including thermal control, is

9 watt-hours/pound for 100 percent depth of discharge.

2. Constant current charging is utilized throughout the charge and overcharge

period.

3. The maximum allowable current during the overcharge condition will supply

100 percent ampere hour capacity in a period of six hours.
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4. The maximum allowable depth of discharge for repeated cycling is 60 percent.

m The excess ampere-hours of overcharge required to maintain continuous

cycling is 25 percent for a six hour charging rate, increasing linearly with

charging rate to a value of 100 percent for a 16 hour charging rate. In

addition, the charging current cannot be reduced to less than the 16 hour

rate if continuous cycling is maintained.

e For purposes of calculating the charging efficiency of the battery, defined

as the ratio of watt-hours delivered during discharge to watt hours put back

into the battery during charge plus overcharge periods, the average discharge

and charge voltages are 1.2 and 1.43 volts per cell, respectively. The

variation of charging efficiency with actual charging time is indicated in

Figure 4.3-17.

4.3.6 SIZE AND WEIGHT

The weights of the power supply subsystem for low, medium, and high levels for the

scientific payloads are shown in Figure 4.3-18. The weights of the cascaded RTG,

battery, and remaining items such as controller, regulator, harness and fasteners

are shown in Figure 4.3-19 for the medium power level system as a function of pay-

load weight. The breakdown of weights for the low and high power levels will be

similar to the component weight distribution shown in Figure 4.3-19.

09
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Figure 4.3-17. Estimated Changing Efficiency of Nickel-Cadmium Battery
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The bnttcry specificenergy and volume utilized,are respectively, 5.4 watt-hours per

potmd and 14 cubic inches per pound. The cascaded RTG weight is calculated on the

basis of 4 watts per pomld. For RTG dimensions, refer to Table 4.3-4. The volume

of the controller and regulator systems are calculated on the basis of 20 cubic inches

per potmd.

4.3.7 RADIOISOTOPE AVAILABILITY

An estimate of the radioisotope available has been obtained from the Division of

Isotopes Development of the United States Atomic Energy Commission and is presented

in Table 4.3-7 in terms of available thermal power for strontium-90, plutonium-238,

and curium-244. The values given in Table 4.3-7, however, can possibly be increased

in the 1969 - 1970 time period, based upon demand.

Figure 4.3-20 indicates the estimated electrical power limits based on radioisotope

availability. The radioisotope availability is based on the total previous year's

supply plus half of the quantity produced during the four preceding years. The

cascaded RTG utilizing curium-244 has the potential availability to provide sufficient

power for several Voyager Landers.

TABLE 4.3-7. THERMAL POWER AVAILABILITY FROM RADIOISOTOPES

(KILLOWATTS/YEAR AT FUEL FABRICATION TIME)

ISOTOPE FISCAL YEARS

SR-90

Pu-238

Cm-244

1967

63

11.5

41

1968

63

15

92

1969

63

17

129

1970

63

20

129

1971

63

23

134

1972

63

25

134
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4.4 THERMAL CONTROL SUBSYSTEM

The Lander thermal control subsystem must provide suitable environments in both

the transit and surface phases of the mission. Electronic equipment operating

temperatures must be maintained between the limits of approximately 40 and 140°F.

While payload temperature limits are not known, it has been assumed that much

tighter control may be required, on the order of + 5°F for some experiments.

During transit, the Lander interior is enclosed with an aft cover for protection

during entry heating. The RTG is inside the vehicle, and the large thermal load

must be transferred to an external surface for radiation to space.

On the surface of Mars, because of the low atmospheric density, heat transfer

from the Lander is still achieved primarily by radiation. In this case, the RTGs

are deployed and can radiate directly to space.

The approaches to thermal control were re-assessed during this study, and the

system chosen is similar to that proposed for the Saturn IB Voyager study.

4.4.1 SYSTEM DESCRIPTION

The system selected is composed of active and semi-passive components. The active

portion consists of a fluid transport loop that provides RTG temperature control

during all mission portions prior to completion of the Mars landing operation. Use of

this system permits installation of the RTG within the entry vehicle until after the

Mars landing, thereby preventing exposure of the RTG to entry heating loads and

eliminating the requirement for external deployment of the RTG during the transit

phase of the mission. It is proposed to deploy the RTG after landing and operate

in a passive mode (i. e., finned RTG surfaces). The transport loop serves as a heat

source during the entire mission for the Lander scientific payload and other Lander

systems requiring temperature control. Heat dissipation of Lander systems (e. g.,

tele-communications) on the surface will be accomplished by radiation from the inner

structure exposed after opening of the Lander aft cover. Temperature control of

this equipment will be maintained during inoperative periods by thermostatically

controlled heaters located within the equipment.

A schematic of the active transport loop is shown in Figure 4.4-1. The loop operates

with the water boiler as a heat sink during launch, entry and recovery and with the

radiator as a heat sink during the transit. Temperature control is not required for

the fluid temperature because of the near constant heat dissipation level of the RTG

and the negligible effect of the radiator environment on the high radiator mean tom-

perature (i. e., 500°F). A heat exchanger couples this loop with a payload loop to

provide temperature control for the scientific payload and other payload items.
A bypass temperature control is provided to control temperature to the payload at 75°F.
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Figure 4.4-1 Lander Temperature Control Schematic

Investigation of aircraft reliability data for actual components similar to the type

required for this system indicates that the motor-pump and bypass temperature

control valve are the prime limiting items. Therefore, redundancy has been con-

sidered for these items. In addition, a completely redundant loop was also considered.

A redundant loop would provide for redundancy of all components and permit the use

of a radiator with redundant loops that could allow loss of a radiator tube due to a

meteorite impact and still permit system operation.

The required radiator effectiveness of the Lander base acting as a radiator for

Lander equipment is shown in Figure 4. 4-2 (i. e., solid line) as a function of heat

dissipation for Landers of 5, 10 and 20 feet base diameters. The worst case of a

normal sun is considered. It is assumed that the equipment maximum baseplate

temperature equals 140°F. The base diameters were assumed to be the radiator fin

root diameter. Also shown on the curve is radiator fin effectiveness of the Lander

base (i. e., dotted line) assuming a minimum skin thickness of 30 mils aluminum and

a mean radiator fin length of one-fourth of the base diameter. The intersection of the

2 curves indicates that the heat dissipation limit of Lander equipment that can be

handled by the Lander base acting as a radiator with the noted skin gauge. The limits

are above Lander equipment heat dissipation values (mainly telecommunications) and,

therefore, result in negligible Lander penalties. During non-operating portions of the

surface operation cycle, thermostatically controlled heaters can be utilized to main-

tain equipment temperatures. Due to the RTG characteristic of constant available

power, heating can be provided without penalty.
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Figure 4.4-2 Equipment Radiator Capability

4.4.2 SYSTEM WEIGHT

The significant parameter for thermal control system weight is the RTG power

supply capability in watts. This value determines the heat dissipation rate that must

be handled by the transport loop and water expendable system. Transport loop flow

rate is based on a 50°F temperature difference across the RTG as a limit based on

permissible gradients. The flow rate determines the size of all valves and pumps.

Heat exchanger size is predominantly a function of heat exchange rate and also of

flow rate. Figure 4.4-3 shows the weight of a basic system (i. e., no redundancy)

for RTG power up to 3 kw. The weights associated with the RTG loop, water, heat

sink and payload loops are shown. The total system weight which has been used in

the parametric study allows for one set of redundant pumps and provision for a

battery heat sink made of isocane paraffin. Also included are weight estimates for

associated hardware and electrical harnesses, The total system weight versus power

supply output may be seen in Figure 5.4-10. Weight and area of a radiator are shown

in Figure 4.4-4 based on the following assumptions :

RTG efficiency = 10 percent

radiator emissivity = 0.8

radiator fin effectiveness = 70 percent

radiator mean temperature = 400°F

radiator fin thickness = 1/16 inch
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It is assumedthat use of the Lander-Bus adapter as the radiator area will result in
a negligible radiator weight penalty for the temperature control system.

Based on a15 psi pressure drop, easily obtainablewith small tubing size, the
motor-pump power requirements are shownin Figure 4.4-5.
ments occur for the transit phase only, whenflow rates are high.
pump is utilized during surface operation whenflow rate requirements are only
10percent of the transit requirements. The fluid considered is a high-temperature,
radiation-resistant fluid of the biphenyl type (Monoisopropylbiphenyl).
weight and motor-pump efficiencies are basedon data for current equipmentwith
extrapolations to 1965state-of-the-art. For example, it was assumedthat DC
brushless motors similar to thosebeing developedfor LEM, would be developedfor
the pump drive.
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5. LANDER DESIGN

5.1 DESIGN OBJECTIVES AND REQUIREMENTS

5.1.1 OBJECTIVES OF LANDER SYSTEM STUDY

The intent of the Lander study work primarily has been to synthesize vehicles cap-

able of carrying selected levels of scientific payload weight, specifically 250, 500,

1000, 2500 and 5000 pounds. After examination of the launch vehicle shroud con-

straints this was modified slightly to consider specific vehicle sizes which could

most advantageously be packed in the overall launch vehicle/Bus/Lander system. A

Lander sized at twenty-feet diameter is an outgrowth of this consideration. The

Lander sizes noted were to be studied parametrically to obtain plots of the various

basic vehicle subsystem weights as a function of Lander entry weight. The scienti-

fic payload requirements for electrical power and communications capability were

to be added at three different levels referred to as minimum, nominal and maximum,

resulting in integrated vehicle entry weights. This study is thus intended to permit

the system engineer to readily synthesize a Lander system based on a specific scien-

tific payload requirement with flexibility in the electrical power and communications

are as.

The parametric vehicle sizes were to be studied for costs and variations, resulting

in a variation of cost of the Lander as a function of Lander size.

In addition to the prime objective parametric studies, certain areas of subsystem

analysis and alternate concepts and requirements were identified as being of suf-

ficient interest to warrant additional depth of investigation and analysis. These

areas, identified as alternate studies, are:

1. The application of a rover vehicle to the larger Landers to provide surface

mobility and greatly increase the yield and scope of the scientific payload.

2. Determination of the effect of better atmospheric definition on Lander de-

sign and payload fraction.

3. Conceptual evaluation of the application of other impact attenuation concepts

such as blow-out bags.

4. Identification of a design approach for a 5000-pound scientific payload vehi-

cle based on a 200 foot per second wind possibility at impact.

5. Studies of ground orientation approaches, selection and optimization.

6. Identification of Lander systems in the heavier payload class, that are

based on a higher W/CDA than the prime parametric series.
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5.i.2 APPROACH TO LANDER STUDY

The procedure taken to synthesize Lander vehicles capable of carrying the specific

scientific payloads is outlined below. The Lander vehicle was analyzed as being

comprised of two major portions, the basic vehicle and the gross payload. The

basic vehicle was considered to consist of the following subsystems:

1. Structure

2. Heat Shield

3. Retardation (including impact attenuation)

4. Ground Orientation

5. Delta Impulse Rocket

6. Separation and Spin-up

7. Transit Thermal Control Radiator

These subsystems were studied parametrically as a function of Lander entry weight,

and the criteria outlined below which were well defined from previous Voyager

studies. Of the above subsystems, the delta impulse rocket, separation and spin

system, and transit radiator are considered as pre-entry systems since they are

utilized and ejected before entry and hence do not contribute to entry weight. How-

ever, they are dependent on entry weight and were so studied.

The basic vehicle subsystems were studied for a range of vehicle entry weights

estimated to encompass the total range of scientific payloads and variations required,

without definition of the gross payload items to be carried. This resulted in a sum-

mation of basic vehicle subsystem weight versus entry weight and yielded a compli-

mentary curve of gross payload that can be carried over the range of entry weights.

The gross payload consists of the remainder of the Lander above the basic vehicle

subsystems. The following gross payload items can be traded off and used inter-

changeably in the desired combination to make up the gross payload that can be

carried by a specific basic vehicle.

1. Scientific payload including installation and deployment hardware and
electrical harnesses

2. Communication subsystem

3. Electrical power supply with shielding if required

4. Thermal control subsystem

These subsystems were discussed in Section 4 and were summed up for each of the

matrices of scientific payload weights, electrical power supply levels and communica-

tion bit rates resulting in 45 gross payloads as depicted in Figure 5.1-1.
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The approach taken in each of the alternate study areas is discussed with the details

of the study in Section 9 of this report.

5.1.3 LANDER REQUIREMENTS AND GROUND RULES

The basic function of the Lander is to house the gross payload throughout the entire

mission and to safely enter the Martian atmosphere and land intact on the surface.

The Lander provides the thermal control function and supports the surface phase

telecommunication and total mission power requirements. On the surface, the

Lander serves as a scientific base from which experiments may be deployed or re-

motely operated.

The Lander has been designed on the basis of the following ground rules and

as sumptions:

1. Mission life on planet - two years.

2. Maximum transit time - 340 days.

3. Entry into a range of atmospheres which would be similar in nature to the

JPL models G to K (11 mb to 30 mb surface pressure), see Figure 5.1-2.

(A 40 mb atmosphere was originally postulated but was not studied as no

further definition was available. )

4. System is designed to enter the above atmospheres at path angles of 20 to

3 5 degrees down from the horizontal.

5. Designs are based on 1965 state-of-the-art.

6. A Mach number of 2.5 at 20,000-feet altitude for adequate decelerator

chute deployment was taken as criteria for trajectory and W/CDA

optimization.

7. Lateral surface winds of 40 mph may be encountered at impact. Surface

slopes up to 30 degrees were considered.

8. Maximum interface diameter is 20 feet. Landers requiring larger base

diameters will utilize extensible drag flaps.

During the study it was identified that the ballistic parameter of 15 lb/ft 2 is ex-

cessively conservative for large vehicles which tend to become large structural

shells with a small volume payload because of the squared/cubed sizing relationship.

Three conditions under which the use of a higher ballistic parameter would be per-
missible were identified:

1. Identification that the Mars atmosphere is above 11 mb.

2. Use of terminal guidance and trajectory correction to reduce the entry
corridor.

3. Entry from a Martian orbit.
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These approaches, which shouldbe further explored for heavy vehicles, are dis-
cussed with specific limitations and criteria in Section 9.

5.i.4 APPLICATION OF PREVIOUS STUDY RESULTS

Since one of the major objectives of this study is to produce in parametric fashion a

range of suitable Mars spacecraft systems, maximum use has been made of previous

study results. Such specific areas as materials selection, materials sterilization

compatibility, primary structure optimization, entry configuration tradeoffs, re-

tardation system selection, etc. have been investigated in detail in prior planetary

entry study programs. The results have been applied directly to the present study

and form the basis upon which the Lander systems are synthesized. It was also

recognized that certain data should be updated or changed; this has been done where

necessary and has been factored into the Lander system design. In some cases it

was felt desirable to repeat past results. Where this is not done, appropriate ref-

erence will be made to the applicable study.

The following is a list of general references which have been used in the present

study:

i.

2.

3.

4.

"Voyager Design Study," GE Document No. 63SD801, 15 October 1963.

"Mariner B Entry Vehicle," GE-RSD, 26 November 1963.

"Advanced Voyager/Beagle," GE-RSD, Document No. 70036, March 1963.

"Voyager Spacecraft System Study" (Phase I-Titan III C Launch Vehicle)

GE Document No. 64SD933, 7 August 1964.

5. i. 5 LANDER MISSION PROFILE

Separation of the Bus and Entry/Lander is scheduled to occur 150,000 nautical miles

from the planet on command from Earth. The separation sequence is depicted on

Figure 5.1-3. Physical detachment is made by initiating four tie-in, spring-loaded

bolts between the Lander aft ring and the Bus pickup points. The spring action will

give the Lander a separation rate of one foot per second. After a coast period of

four seconds, to ensure a safe clearance between the Lander and Bus, the nitrogen

cold gas unit is activated to give the Lander a sufficient rotational rate to minimize

unwanted torques during the retro phase. For single Bus/Lander combinations, the

delta velocity (_ V) rocket can be fired any time after full spin-up is achieved since

the productive mission of the Bus is completed after launching of the Lander. In

this case, particle impingement from the _ V rocket on the Bus would have no effect

on the remaining mission.

For missions in which a cluster of smaller Landers are used, it is necessary that

the Lander _V rockets do not impinge on the remaining cluster. A possible method

of preventing this from occurring is to actively control the spatial relationships of
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the separated Lander and the remaining cluster. Figure 5. 1-4 shows a typical four

Lander-cluster/Bus combination. In Step (b) the entire spacecraft has been oriented

to allow a proper velocity vector for a successful entry trajectory. Step (c) shows

the first Lander being separated and spin stabilized. Separation is in the direction

opposite to the approach trajectory to allow the Lander _ V rocket to fire without

affecting the spacecraft. After reorienting the spacecraft, the cluster is given a

small impulse to move out of the path of the Lander Step (d). With proper timing

the Lander can complete its _V firing by the time it intersects the spacecraft tra-

jectory. This sequence is repeated for all Landers.

Once the _V rocket has fired, it can be ejected from the vehicle. The Lander then

proceeds on an impact trajectory, telemetering directly to Earth diagnostic informa-

tion and separation sequence data. Just prior to entry (entry sequence begins at 106

feet altitude) the thermal control system switches from the space radiator to an in-

ternal evaporative heat exchanger as a heat sink. The radiator is then ejected.

There may be a requirement for a despin operation at this point to allow the vehicle

to converge more quickly to small angles of attack. If this is needed, the nitrogen

cold-gas spin system would be called upon to perform this function. The spin system

is then ejected and the Lander is in an entry configuration.

Entry experiments and the telecommunication system will be operating at this time.

A buffer storage unit is provided for recording of events which take place during

communication blackout and as a backup to real time descent telemetry. At a pre-

selected descending g-level, the retardation system deployment sensor will be

activated. When a Mach number of 2.5 is reached, a signal from this sensor will

fire a mortar charge which deploys the supersonic decelerator parachute. Should

there be a malfunction in the redundant programmer, the radar altimeter will deploy

the parachute at an altitude of no less than 15,000 feet. If an extensible flare de-

sign is used, the flare assembly including the center support structure is jettisoned

just prior to decelerator parachute deployment. After a timed interval to allow the

vehicle to decelerate to (or below) Mach 1.0, the main parachute(s) is deployed.

The radar altimeter will be further called upon to signal terminal retrorocket firing

altitude. The retrorockets will fire to minimize impact velocity. Upon impact,

the parachute harness lines will be severed and if it is found necessary, several

methods may be employed to ensure that the chute spills to one side of the Lander.

Small solid rockets or sequenced harness separation are typical of some techniques
available.

After all vehicle motion ceases, the Lander aft cover will unlock and open, thereby

stabilizing or righting the vehicle. The cover actuator will be designed to operate

even if the Lander comes to rest on its aft cover. Once open, stabilization legs

are deployed through the forward structure and aid in leveling the Lander. The

antenna boom and television camera can now be erected and, where required, scien-

tific experiment packages can be deployed overboard. With the opening of the aft

cover, the radioisotope thermoelectric generator(s) is now exposed to the Martian
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atmosphere and is cooled by direct thermal radiation. Throughout the entire mission,

the payload is maintained at proper operating temperatures through the use of a

secondary heat exchanger loop between the RTG heat source and the payload. Sur-

face operation of the payload can proceed under a pre-programmed arrangement or

can be controlled through Earth commands as required. Surface life is planned for

two years.

A detailed sequence of events covering items pertinent to a general Lander mission

from prelaunch checkout to operation on the surface of Mars is presented in Table

5.1-1.
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5.2 BASIC LANDER VEHICLE SYNTHESIS

5.2.1 PROCESS TO SYNTHESIZE BASIC VEHICLE

The process of synthesizing a Lander system to carry a specified payload is one of

matching a basic vehicle weight capability with a gross payload weight associated with

that particular scientific payload application. In general, it has been found that the

majority of the subsystems which comprise the gross payload are independent of

Lander design or configuration. One exception to this is the RTG radiation shield

which is dependent on the type of scientific payload, power required by the scientific

payload (i. e., a function of the RTG size}, and the physical size of the basic vehi-

cle. However, where shielding was required, iterative methods were used in the

synthesizing procedure. A second item which could be limiting is the high gain

antenna of the prime communication link.

The general independence of the gross payload and basic vehicle allowed work to

proceed separately on these items. The basic vehicle was then assembled from

its various subsystems derived parametrically on the basis of entry weight. Five

nominal entry weights were chosen which were felt to encompass the range of scien-

tific payloads of interest. On the basis of these entry weights an integration was

made of the basic vehicle subsystems, namely:

Heat Shie ld

Primary Structure

Aft Cover Assembly

Ground Orientation

Retardation and Shock Attenuation

Design layouts were made concurrently to support weight estimates. The weights of

these items were summed and subtracted from the entry weight to yield a gross pay-
load weight carrying capacity.

Technical analysis of the basic vehicle subsystems follows in Section 5.2.3.

5.2.2 AEROMECHANICS

A. Configuration Study and Selection

In determining a Mars-entry configuration for Voyager application, one can narrow
the range of configuration classes to ballistic vehicles on the basis of state-of-the-

art considerations and uncertainties surrounding early planetary missions (Refer-

ence 1). Within the general class of flight tested ballistic configurations are sphere-

cones and sphere-cone-cylinder-flares. Possible adverse aerodynamic stability

effects on the flared shapes, due to atmospheric CO 2 content, and overall higher
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design confidence dictate the choice of sphere cones. Limits of the sphere-cone

configurations can vary from sharp-pointed cones to very blunt segmented spheres.

Both of these extremes are worthy of comment for specific applications.

Pointed sphere cones, which maintain an attached bow shock wave, have been sug-

gested by Allen of NASA Ames as desirable, if not the required, entry shapes when

the heating due to radiation becomes dominant. For Voyager applications, extremely

high entry velocities are not encountered and overwhelming radiative heating is not

expected. Therefore, the lower drag of these pointed bodies (and their associated

higher ballistic parameter} makes them appear non-optimum for this mission.

Very blunt configurations, such as the Apollo type, are also of interest for Mars

entry. The high-drag shapes lower the ballistic coefficient so that the retardation

problem is eased. However, they also present large areas with near stagnation

values of loads and heating. Perhaps the largest question mark on these shapes is

their dynamic characteristics and the resultant capability to converge to near zero

angle of attack during regions of high loads and heating. During initial portions of

the entry while the dynamic pressure is increasing, density damping will occur.

When the dynamic pressure rises to significant values, the aerodynamic character-

istics of the configuration will influence oscillation convergence. After peak dyna-

mic pressure, any aerodynamic instability will be even more pronounced. While

some differences in test data exist concerning the exact value of aerodynamic damp-

ing (C m + Cm-} for these shapes at high Math numbers, they at best have near
zero da_ping_or small angles of attack. Combining this with negative values of

C T, the dynamic stability factor C D - C L + (Cm_ + Cm_ } (D/(_) 2 will be positive
for_hese high drag shapes indicating poor a_ngle of aC_tack convergence. While the

situation may improve at higher angles of attack, six-degree-of-freedom trajectories

have shown with relatively small initial pitch rates (q < 10 deg/sec}, high angles of

attack or even tumbling can occur well into the entry trajectory even with reasonable

spin rates. In view of the existing uncertainties in the Voyager mission (i. e.,

atmosphere, possible Lander orientation at initial entry, etc. ), it is felt that unless

absolutely necessary for accomplishment of mission requirements, very blunt seg-

mented sphere shapes should be avoided. This process of elimination leaves a

rather broad family of blunted sphere-cone configurations for possible Lander con-

figurations.

A matrix of these configurations were parametrically investigated to determine

optimum configurations (Reference 1). The results of this study indicate an optimum

configuration at a bluntness ratio of approximately 0.6 and a half-cone angle near

50 degrees. The upper limit on cone angle is a function of acceptable packaging

density and adverse angle of attack convergence of blunter shapes as discussed

previously. Fortunately, early re-entry technology (when heat sink approaches

were being followed} has provided a near optimum configuration for Mars entry in

the flight-proven Mark 2 vehicle. This configuration has a half-cone angle of 51.5

degrees and a bluntness ratio of 0.47. The center-of-pressure location for this
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I
vehicle is 64 percent of the base diameter. Center of gravity estimates for the 1

vehicle designed as a part of this study show an average Xcg _ 25 percent, hence,
mum

more than adequate static margin is provided. Since extensive ground and flight 1

test data are available on this configuration and on the basis of trade-off studies it m

appears near optimum, it has been selected as the Voyager Mars Lander.

B. Selection of Ballistic Parameter 1

From the initial work which was accomplished on the Saturn IB Voyager study using I

Kaplan's low density atmospheres, it became apparent that higher entry path angles

were incompatible with retardation requirements. Studies have led to a two para-

chute (supersonic decelerator and terminal parachute) system. State-of-the-art I
considerations show that a deployment Mach number of 2.5 is attainable for the de- 1

celerator chute and that 20,000 feet represents a near minimum safe deployment

altitude. From these retardation system requirements, a trade off of entry path S
angle, 7e, and ballistic parameter, W/CDA, can be made. Figure 5.2-1 shows the I

W/CDA and 7e required for the 11 rob-A, 15 mb and 30 mb atmospheres to allow the

vehic_ie to decelerate to Mach 2.5 at 20,000 feet. 1
m
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Capture angle into the range of considered atmospheres is estimated at 18.5 degrees

maximum, measured down from the horizontal. Uncertainties in the Martian atmos-

phere make it unwise to design a vehicle to enter too near the capture angle since the

total integrated heating becomes quite large, and a small guidance error could cause

an "overshoot," resulting in the vehicle escaping. Consequently, an entry path angle

of 20 degrees is chosen as the design skip limit and establishes the lower limit of the

entry corridor. Based on system criteria of the Voyager Saturn IB study, a maxi-

mum path angle of 35 degrees was specified which is compatible with a ballistic

parameter of 16 lb/ft 2. For design purposes and to allow for potential weight growth,

a W/CDA = 15 lb/ft2 was chosen. This value will also allow retardation require-

ments to be met up to entry velocities of 26,000 feet per second. Error analysis shows

that a 3 _ value of + 2.4 degrees is a reasonable tolerance on entry path angle and

according to Figure 5.2-1 would allow a selection of W/CDA = 27 lb/ft 2. However,

in view of the uncertainty of the atmosphere and the sensitivity of required W/CDA

to it, it seems unrealistic to design to the higher and less conservative ballistic

parameter; hence, a W/CDA of 15 lb/ft 2 is recommended. The ballistic parameter

can be directly affected if higher Mach number parachutes are developed and if

further confidence is found by confirmation of the atmosphere with prior Mariner

flights. (See Section 9.2.5, Effect of Definition of the Martian Atmosphere. )

C. Entry Trajectory

Point mass entry trajectories have been made for the two limiting cases of path

angle, 20 degrees and 35 degrees, for a ballistic parameter of 15 lb/ft 2 and a

nominal entry velocity of 21,000 feet per second. Significant parameters are plotted

in Figures 5.2-2 and 5.2-3 for the 20 degree case and in Figures 5.2-4 and 5.2-5

for the 35 degree entry. Maximum axial deceleration encountered in the range of

atmospheres is 55g and occurs at an altitude of approximately 77,000 feet for a 35

degree entry. A peak dynamic pressure of 830 lb/ft 2 can be expected if entry is

made in an 11 mb atmosphere at _'e = 35 degrees.

Drag coefficients for the point-mass trajectories are used as a function of both Mach

number and altitude. Aerodynamic characteristics for this vehicle may be found in

Reference 1. The several CD-versus-h variations were constructed by matching

Earth and Martian densities and adjusting the altitudes accordingly. Trajectory

calculations use linear interpolation between tabular values of speed of sound and

logarithmic interpolation between tabular values of density. Entry is assumed to

begin at 106 feet altitude.

The point-mass trajectories, of course, yield no information about lateral loads,

effects of spin, or effects of vehicle configuration. Consequently, analyses have

been conducted in six degrees of freedom to describe the motion of and about the

vehicle's cg. The aerodynamic coefficients were used as a function of altitude and

angle of attack as well as Mach number and angle of attack.
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A spin rate of 60 rpm is adequateto minimize the effects of undesired transverse
rates due to errors in the separation system or induced transverse rates due to CG
offset or products of inertia by minimizing the precession cone of the vehicle prior
to entry. Following entry, however, the angle-of-attack convergencewill vary in-
versely with the spin rate, and too large a spin rate will cause the vehicle to main-
tain a fixed spatial orientation, resulting in large angles of attack at lower altitudes.

Angle-of-attack convergencewill be most rapid for the model atmosphere having the
largest density gradient. If the vehicle is de-spun to a small roll rate prior to entry,
the motion will tend to becomeplanar and angle-of-attack oscillations will converge
rapidly.

Maximum loadsnormal to the center-line of the vehicle (which vary directly with
entry angle of attack) will be largest for the 11 mb-A atmospherewhich has the
largest density gradient.

Shallow entry path angles cause a slight increase in entry angle of attack due to the
changein pathangle and inertial central anglewhile the vehicle is abovethe sensible
atmosphere. This increase seldom exceedsapproximately five degrees but the sub-
sequentangle-of-attack convergenceis delayed to a much lower altitude. Reference
2 indicates that for vehicles of this shape, there is sufficient dynamic stability to
ensure that convergencecontinuesafter the density damping decreases. There is
a possibility of dynamic instability if the roll rate becomes much larger than 60 rpm.

D. References for Section 5.2.2

(1) "Voyager Design Study, Vol. IV, System Design," GE-MSD Document No.

63SD801, 15 October 1963.

(2) "Mariner B Entry Vehicle, Vol. I, Technical Study," 26 November 1963.

5.2.3 BASIC LANDER VEHICLE SUBSYSTEMS

Contained in this section are descriptions and a brief summary of analysis for each

of the subsystems which make up the basic vehicle. Also included in this section

is a discussion of the extensible flaps and the pre-entry subsystem.

A. Heat Shield Analysis

The parametric nature of the study required that heat transfer calculations be made

for entry into the Martian atmosphere considering:

1. Variations in vehicle size for one entry condition

2. Variations in entry conditions for one vehicle configuration.
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The first case is applicable to the main part of the study where a range of Lander

weights was investigated. The second case refers to a W/CDA and entry effect
which is treated in Section 9.2.4.

The matrix of conditions considered are given in Table 5.2-1. Stagnation heating

rates were calculated based upon the work of Scala and Gilbert (Reference 1), with

off-stagnation heating rates based upon a laminar heating distribution presented by

Brunner (Reference 2). The heat fluxes thus obtained were used to obtain one-di-

m_msional conduction solutions with melting, thereby providing a basis for the es-

tablishment of the required ablation and insulation thicknesses.

TABLE 5.2-1. VEHICLE GEOMETRY AND ENTRY CONDITIONS

Nose

Radius

(RN)(Ft)

2.17

3.05

4.32

6.85

9.70

4.70

4.70

4.70

4. 70

4.70

4.70

Bluntness

Ratio

(RN/RB)

0.47

0.47

0.47

0.47

0.47

0.47

0.47

0.47

0.47

0.47

0.47

Half-Cone

Angle

(0 c) (Deg)

51.5

51.5

51.5

51.5

51.5

51.5

51.5

51.5

51.5

51.5

51.5

Ballistic

Coefficient

(W/CDA)

(Ib/ft2)

15

15

15

15

15

20

35

45

45

45

45

Entry

Velocity

(Ue) FPS
(ft/secx 103)

21

21

21

21

21

15

15

15

15

15

21

Path Angle

(¢) (Deg)

110

110

110

110

110

105

105

105

110

115

110

Elastomeric Shield Material (ESM) has again been chosen for the unique environ-
mental conditions associated with a Martian mission.

ESM requirements (with a 50 percent safety factor applied to ablation) have been de-

fined as a function of nose radius for one entry condition. For a range of entry con-

ditions design curves are presented for one configuration, allowing the user to de-

fine required heat shield thicknesses. The combination of the two results will allow

estimates to be made of heat shield weight relative to vehicle/payload weight as a

function of vehicle size and entry conditions.
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1. Entry Environment

The determination of heat shield requirements for a Martian entry mission is com-

plicated by uncertainties in the predictions of Martian atmospheric characteristics.

Several atmospheric models (Figures 5.2-6 and 5.2-7) have been advanced which

differ both in chemical composition and physical structure. The thermal environ-

ment during descent to the Martian surface, is affected not only by the absolute

free-stream density level, and the free-stream atmospheric molecular weight (moo),

but, also the atmospheric scale height,* through its effect upon the trajectory.

Previous studies considering these effects (References 3 and 4) have indicated that

a conservative heat shield design may be achieved by employing the Martian 11 mb-B

model (JPL Model H). Consequently, the heat shield calculations and requirements

presented are based on this atmospheric model consisting of 65 percent carbon

dioxide and 35 percent argon.

Aerodynamic convective heating was obtained through the use of the laminar-stag-

nation relationship developed by Scala in Reference 1. This relationship is quite

similar to that which is commonly employed for Earth re-entry. However, it con-

tains a molecular weight correction (C) based upon considerations of the thermo-

chemical effects of foreign planetary atmospheres upon hypersonic stagnation region

laminar heat transfer. The resulting relationship is:

qL = C P_o0"5U 3

where C is a function of the atmospheric free-stream molecular weight:

-- -10
C = (9.18 + 0.663 Moo) 10

Thus, for the Martian atmospheric model with a molecular weight of 42.6, the

stagnation point heating is given by:

• -9 0.5 3
qL = 3.74x10 p_ U

2. Configuration Effects

To determine the effects of vehicle size on heat shield requirements calculations

were made for an entry condition of:

W/CDA = 15 lb/ft 2

"y = 20 degrees
e

U = 21000 ft/sec
e

considering sphere-cones with a 51.5 degree half-cone angle, bluntness ratio of

0.47 and nose radii from 2.17 to 9.70 feet. Using Scala's relationship, the heat

flux histories in Figure 5. 2-8 were obtained.

*Atmospheric scale height (H) = RT/_q. For an isothermal atmosphere,
-h
H

Pco = PSL e
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I

Since all the heat fluxes presented are constant multiples of heating for a one-foot nose I

radius, and off-stagnation heating at a point may be represented by a constant fraction

of stagnation heating (see Figure 5.2-9); it was possible to present heat shield require-

ments parametrically as a function of total time-integrated heating. I

I.O I

0.9

I

Z

O.E
(/3

0. I

0
0 0.5 1.0 1.5 2,0 2.5 3.0 _.5 4.0 4.5

NORMALIZED WETTED LENGTH (SIR N)

Figure 5.2-9. Laminar Heat Transfer Distribution for Martin Entry Lander Vehicles

To obtain heat shield requirements for a given heat pulse, one dimensional conduction

solutions with melting were obtained (Reference 5). Calculations were made for several

elastomeric shield thicknesses employing the thermal properties given in Table 5.2-2.

The results were then used to obtain: 1} the variation in stagnation point integrated

heating with nose radius (see Figure 5.2-10), 2) stagnation point shield requirements

without safety factor for a range of nose radii (see Figure 5.2-11), 3) stagnation point

shield requirements with a 50 percent safety factor applied to ablation for several nose

radii (see Figure 5.2-12), 4) total stagnation point ESM shield requirements (with and
without safety factor) as a function of total heating for a backface temperature of 350°F

(see Figure 5.2-13), and 5) overall heat shield requirements as a function of nose radius

(see Figure 5.2-14). Figure 5.2-15 is presented to show total heat shield weight as a

function of entry weight. The heat shield weight shown is only for the vehicles without

flaps and the center portion of those with flaps. The heat protection material for the

extensible flare section is presented as a part of the flare assembly (see Section 5.2.3

(G)). The break in the curve occurs at the unflapped/flapped vehicle cutoff point.
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TABLE 5.2-2.

Density (Ib/ft3)

Specific Heat (Btu/Ib°F)

Thermal Conductivity

(Btu/ftZsec - °F/ft)

Heat of Ablation (Btu/ib)

(Cold Wall)

Degradation Temperature (OR)

THERMAL PROPERTIES (ELASTOMERIC SHIELD MATERIAL)

40

0.34

0.000026

7560

1240

In addition, the results as developed in Figures 5.2-9, 5.2-10, and 5.2-13 may be

employed as general heat shield requirements at any body point of a 51.5 degree sphere-

cone, within the limiting nose radii of two and ton feet. The general technique to be

followed is indicated in Figure 5.2-16.

3. Trajectory Effects

To relate heat shield requirements to variations in the entry trajectory a 51.5 degree
sphere-cone with a bluntness ratio at 0.47 and nose radius of 4.7 feet was considered.

Scala's relationship was again employed to obtain the stagnation heating indicated in

Figure 5.2-17, 5.2-18 and 5.2-19 for entry conditions shown in Table 5.2-3.

TABLE 5.2-3. STAGNATION HEATING RATES

Path Angle

(deg)

15

15

15

20

25

2O

Velocity _
(ft/sec x 10 3)

15

15

15

15

15

21

Ballistic Coefficient

lb/ft 2

20

35

45

45

45

45
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I
requirements for the several entry conditions.

ship between ablation and heating as given by:

i XABL = _eQ (inches)

| %

the results obtained were used to obtain Figur

i ablation as a function of both ballistic coefficient and path angle.

Variation, in conic_:l insulati ,n requirements we::e aLso o )tainec

I 5.2-21. ] ,ecause o:! the sma] Lvariation in insulation reqt ireme]ballistic c >efficients, a W/C )A of 45 was selected a,_ typ: cal an<

insulation variation with path angle indicated in Figure 5.2-22.

1.0

| 1
06

• _-¢'4-_ I / I/ J IT

• _/f/ ATMOSPHERE- MARTIAN limb-8
p,-

The stagnation heating rates obtained were multiplied by a factor of 0.34 (from Figure

5.2-9) to obtain heating rates at the end point of the conical frustum. These heating

rates were then employed (as previously described) to obtain ablation and insulation

Employing the proportionality relation-

the results obtained were used to obtain Figure 5.2-20 indicating stagnation point

Variations in conical insulation requirements were also obtained as indicated in Figure

Because of the small variation in insulation requirements over the range of

ballistic coefficients, a W/CDA of 45 was selected as typical and utilized to obtain the

Te (DEG)

Figure 5. 2,20

MOOEL

MATERIAL-- ELASTOMERIC SHIELD MATERIAL

ENTRY VELOCITY- 15,000 FT/SEC

0.1

I0 20 30 40 50 60 70 80 90 I00

BALLISTIC COEFFICIENT [W/CDA)

Stagnation Point Ablation Requirements (Without Safety Factor)
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In a manner similar to that previously employed for bluntness and radius variations,

heat shield requirements may be defined at particular body locations for any set of

entry conditions within the matrix considered. The exact technique to be employed is

indicatedh Figure 5.2-23.

4. Conclusions

The current study has considered both configuration and trajectory variations as they

affect elastomeric heat shield requirements. However, these two sets of parameters

were varied independently of each other. As a result variations in heat shield require-

ments with nose radius, observed for one entry condition, are not necessarily valid for

other entry conditions (unless demonstrated through further analysis}. Similarly,

variations in heat shield requirements with entry conditions for one vehicle do not

necessarily apply to a different vehicle. Nonetheless, the results presented may be

used to indicate trends and should serve as a useful tool in relating heat shield weight

to vehicle/payload weight both as a function of vehicle size and entry conditions.

5. References For Section 5.2.3(A)

1. Scala, S., and Gilbert, L., "Theory of Hypersonic Laminar Stagnation Heat

Transfer in Dissociating Gases," AETM No. 188, 11/1/64

. Brunner, M. J., and Gallagher, P. A., "A Simplified Analysis of the Aerodynamic

Heating of a Blunt Body Re-entering the Earth's Atmosphere at Hypersonic Velocity,"

TIS R58SD227, 11/3/58.

3. Voyager Design Study - Volume IV, "System Design," GE No. 63SD801, 10/15/63.

4. Simons, R. E., "Martian Parametric Heat Fluxes (Low Density Atmospheres),"

PIR ARSTA-8151-024, 10/8/63.

5. DiChristina, V., "A One-Dimensional Conduction Melting Solution With Internal

Air Gap," AETM No. 174, 11/18/60.

6. Nomenclature For Section 5.2.3(A)

Symbols

A = drag reference area g = acceleration, gravitational

C = molecular weight correction factor h = altitude, from surface of planet

C D = drag coefficient H = scale height

e = napierian logarithm base H = heat of ablation
e
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Symbols {con' t)

m = mean molecular weight ¢

q = heat transfer rate

P

Q = time integrated heating

R = Radius, gas constant

S = wetted length from stagnation point

T = isothermal atmospheric temperature e

U = velocity = v L

W/CDA = ballistic coefficient SL

X = axial distance from stagnation point N =

shield thickness

Abl =

= angular distance from stagnation point

measured on spherical section S

= path angle measured from local horizon T

0 = half-cone angle ins

CO

= path angle measured from local
vertical

= atmospheric density or shield

material density

Subscripts

= entry conditions

= laminar or local conditions

= sea level

no se

ablation

= stagnation conditions

= total (time integrated) heating

= insulation

= free stream conditions

B. Structural Mechanics

i. Primary Structure Analysis

In order to study the Lander system parametrically over a wide range, a number of

specific vehicles within this range were chosen and primary structures were analyzed

for these vehicles. Analysis is, in general, based on the procedures and results of the

Voyager Saturn C1-B Study (Reference 1). To avoid duplication of this previous work,

it was decided that the present study should be concentrated on parametric study of the

broad range of vehicle sizes specified with new analysis limited to specific areas such

as the alternate impact attenuation system. Optimization of the materials and structural

configurations presented parametrically herein as well as greater detail of analysis may

be found in Reference 1 and, hence, will not be repeated.
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The vehicles investigated were all of the same configuration, with a bluntness ratio of

0.47. The outer shell consists of the thermal shield, crush-up material or filler, and

a metallic load carrying structure. The thermal shield provides heat protection only

and was not assumed to resist any loading. The filler was provided to serve as a

continuous backup to the shield and to transfer the external pressure loads to the

structural shell. For the purposes of the parametric weight study, all internal equip-

ment was assumed to be reacted along the shell. This condition is shown in Figure
5.2-24.

AERODYNAMIC /,_

PRESSURE _

FILLER __ _,Z_ re- _ PRIMARY

MATERIAL _ STRUCTURE

_INTERNAL

_{t_._ WEIGHT

HEAT /''"_ ,f

SHIELD L CRUSH UP
MATERIAL

Figure 5.2-24. Structural Shell Cross-Section

Thus, all aerodynamic pressures are applied to the shield and transferred to the shell,

and all inertia forces are applied directly to the shell. Impact forces are applied

through the "hard spots" of crushup material and reacted by the nose shell and support

rings.

The load condition selected for the preliminary design of the study vehicles was that

corresponding to the peak axial g condition at a zero degree angle-of-attack. The

vehicle weight was assumed to be distributed throughout the internal volume at a

constant packaging density. The choice of zero degree angle-of-attack is considered

realistic for this study, since investigation was conceptual by nature. The uniformly

distributed internal weight will not be obtained in an actual hardware design. Packaging

here will place the components on specific bulkheads or shelves with discrete load

transfer points into the load-carrying shell. This perturbation will change the axial

load condition but is not considered severe, since the external pressure, in general,

is the more severe load contributor. In a more detailed vehicle design analysis

phase, bulkhead locations and weight distributions will be analyzed in detail.

The structural material is aluminum honeycomb sandwich which, from previous studies,

was found to be the best choice for this application. The outer face temperature was
assumed to be 300°F and the inner face was maintained at 100°F. The sandwich faces

were calculated from the yield condition and the core thicknesses were determined to

resist buckling.

The analysis followed a pattern similar to that used in previous GE planetary study

programs. The Hess-Bailey-Most adaptation (Reference 2) of the Kanemitsu-Yojima
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relation (Reference3) was utilized in conjuction with anequivalent cylinder methodfor
buckling determination andthe vonMises andHencky criterion was used to determine
yielding. A core density of 0.0035 lb/inch 3shouldbe used. For weight estimation, a
fabrication factor of 1.9 is recommendedfor gross weights under 5000poundswith an
asymptotic decrease to 1.5 for gross weights over 25,000 pounds.

It became apparentthat the nosecap design was more critical for impact conditions
than for aerodynamic loading. Therefore, the nose has not beenincluded as part of the
primary structure but is included as a part of the shockattenuation system becauseit
directly affects the retardation system optimization procedure which follows.

Figure 5.2-25 is a summary curve of primary structure weight vs. entry weight. The
structure weight here includes the frustum section, structural rings, and necessary
hardware associatedwith this structure. The curve shows a break occurring at an
entry weight of 5900lbs. This is the point at which the vehicle base diameter is 20 feet.
All heavier vehicles use this 20 foot diameter core andutilize extensible drag flaps which
are treated as a separate structure. The decrease in structure weight for increasing
entry weight beyondthis point is due to the increasing nose radius associatedwith
these vehicles andhence, a smaller and smaller frustum section.

IO(

80O

CONFI(_.= e =5_-5 °

RN/RB =0.47
INCI, UDES

FRUSTUM (ALUMINUM HONEYCOMB
RINGS
HARDWARE

I - I
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•.r 600

/w

500

n-

I.-- 400

° /
I- 300

/
200
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IOO
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Figure 5.2-25 Primary Structure Weight vs. Entry Weight
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2. Aft Cover Design

The function of the aft cover is to provide protection for the scientific payload during the

duration of the trans-Mars flight, through entry and after initial impact. It also functions

as part of the ground orientation system,

I

I
I

I

I

By far the most severe loads are caused by tumbling of the vehicle which loads the aft

cover through an effective impact velocity as shown in Figure 5.2-50. Only the round-

back design takes direct impact loads and will be considered here.

The aft cover consists of an aluminum honeycomb sandwich structural shell, a layer of

aluminum honeycomb crushup and an ESM coating for thermal insulation. The crushup

is sized to absorb the worst case backside impact while restricting the deceleration to

125 g. In this way, a minimum density crushup may be used. A secondary effect of

the crushup is to spread the concentrated impact load more uniformly over the structural

shell. The structural shell is sized in the same manner as the sphere-cone structural

shell with only impact loads considered.

The aft cover weight as a function of lander entry weight is presented in Figure 5.2-26.
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I
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u.l 400

I "0U
3OOI.-

h

I I00

/
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Figure 5.2-26 Aft Cover Weight Versus Entry Weight
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3. References for Section 5.2.3B

1. Voyager DesignStudy, Vol. IV"System Design", GE-MSDDocumentNo. 63SD801,
15October 1963.

2. Hess, Bailey, Most, "Ballistic Re-entry Vehicle Thermo-Structural Optimization",
G.E. TIS 62SD199,October 23, 1962.

3. Kanemitsu, S. and Nojima, N., "Axial Compression Tests of Thin Circular
Cylinders", M.S. Thesis, Califronia Institute of Technology, 1939.

C. Impact Shock Attenuation

Impact attenuation to limit the shock loads transmitted to the payload is provided through

the use of fiberglass honeycomb crushable material. Fiberglass, as in the case of

previous studies, was selected because of its relatively high specific energy absorption

capacity and its transparency to radio frequency, a requirement set by the use of a

radar altimeter. The studies have assumed a local ground slope of 30 degrees and a

design surface wind of 40 mph. Experimental results on Contract 950564 which showed

values of specific energy (foot-pounds of energy per pound of material) as high as

24,000 pounds for the optimum density of fiberglass honeycomb have been used as

a reference. Variation with impact at other than parallel to the honeycomb cells was

determined on that study to be a reduction of approximately 2 percent per degree.

The value of specific energy used on this analysis was 15,000 pounds. This reduction

in allowable energy capacity (increase in weight) was considered adequate to cover

off-optimum densities and the effect of impact at other than parallel to the honeycomb

cells. This design simplification was necessary because of the parametric nature of

the study, the large number of vehicle weights, geometries, descent velocities, lateral

velocities and surface slopes to be considered.

The impact attenuation weight is based on analysis for the "worst?' case condition selected
as shown below:

CASE !

{WORST CASE)

VD = VDESCEN T

VN = VNORMAL

VT = VTANGENTIAL

Vw = VWlND

CASE 1I
(LEADS TO

TUMBLING AND
DESIGNS AFT
FACE MATERIAL)

CASE n'r

CASE "Iv

,, D

VW

"___tVD VW = O

//////////////

/////////////
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I
I

I

Of the four cases illustrated (as well as the intermediate variations), Case I was selected

as the worst case and used for design of the impact attentuation material on the forward

face of the Lander vehicle. It is evident that vertical velocity and lateral velocity would

add vectorially and lead to the maximum normal velocity and, of course, the maximum

energy to be absorbed. In analyzing Case II, where the wind (or the slope) has reversed,

the vector of normal velocity is obviously greatly reduced and the energy dissipated,

which is proportional to impact velocity squared, is therefore small in comparison to

that dissipated by the normal impact in Case I.

I Using a descent velocity of 50 ft/sec which is representative of worst case atmosphere
and retrorocket tolerances an evaluation may be made of the relative amounts of energy

absorbed in Cases I and II. For Case I and Vw maximum = 40 mph = 59 ft/sec:

I VN =V Dcos 30 °+ V wsin30 °

I V N = 50 (.866) + 59 (0.5) = 74 ft/sec

KE N= 1/2 mv 2 =2 (74) 2 =2740mft lb

i where m is the mass of the Lander and K E N is the energy to be absorbed by normal

impact.

I V T --V D sin 30 °+ Vwcos 30 °

i = -50 (0.5) + 59 (0. 866) = 26 ft/sec

i KE T : 1/2 my 2 = 2 (26)2 : 338m ft Ib

where K E T is energy which causes tangential sliding or tumbling.

I
I

I
I

I

I

I
I

For Case II:

V N =V Dcos 30 ° b VW sin 30°

=50 (0.866) -- 59 (0.5) =15ft/sec

K E N m (15)2- 2 = 112.5m ft lb as compared with 2740 ft lb for Case I,

V T =V D sin 30 °+ V wcos 30 °

KE
T

V T = 50 (0.5) + 59 (0.866) = 76 ft/sec

m 2
= -_- (76) = 2880m ft lb the worst case for tumbling.
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A preliminary stability analysis indicates that tumbling will occur in Case II so the vehicle
must be designedfor this condition and impact attenuation provided on the aft face. In
consideration of CasesHI and IV, it is evident that they represent cases intermediate
between I and II andmay beomitted in view of the limited depth of analysis possible on
this study becauseof the breadth of the required parametric analyses.

The impact attentuation material designedfor the forward face of the vehicle for Case I
is adequatefor CaseII because:

I. The normal velocity is much smaller in Case II

. The tangential force on the face of the vehicle due to V_ and the resultant
T

friction force can be reacted by a face sheet on the outer surface of the

honeycomb and sheared out to undamaged portions of the vehicle face.

The face sheet noted above should be of non-brittle material such as fiberglass to

retain integrity under impact deformation. It can transfer friction forces due to

tangential velocity at impact to undamaged areas by both shear and tension and should

be designed to withstand the maximum friction which may be developed based on the

best estimate of the Mars surface.

In implementing the program definition phase of a Voyager Program, many areas of

design, particularly in the application of theory to a specific geometrical configuration,

should be analyzed in depth and selective tests performed to provide experimental

substantiation. Variables to be considered include vertical velocity, lateral velocity,

allowable g levels, surface slope, roughness, bearing strength and coefficient of

friction, vehicle configuration, vehicle motions at impact, safety factors, load-stroke

variation, effects of tangential velocity at impact, and the advantages of adding a face

sheet to the exterior surface of the honeycomb.

Techniques to determine the required stroke and core densities are similar to those

used in the two previous Voyager studies. However, empirical formulations of the

previous curves have been utilized in order to streamline the calculations. This was

done to enable a more direct and rapid estimation to be made of the impact attenuation

system weights for the range of vehicles considered.

Impact deceleration rate is limited to 125 g's. Figures 5.2-27 to 5.2-31 show the total

impact system weight as a function of descent velocity for vehicles weighing 1000 to

10,000 pounds. The uppermost curve on all figures is one for which the system has

been designed for a 125g deceleration.

I

I
I
I

I
I

I

I
I

I

I
I

I

I

I
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An interesting anomaly which occurs is that the system weight increases at the lower

velocities when the minimum permissible honeycomb thickness (to give 125g decelera-

tion) is used. This is due to the fact that with the lesser thickness, a denser core is

required to absorb the energy within a volume predicated by the thickness. This results

in a higher crushing stress in the honeycomb, and thus a higher unit load on the backup

structure which has a greater radius with lesser thicknesses. The higher applied stress

and the larger radius beth have a direct action on the back-up structure weight and

therefore cause high rates of weight increase at the lower descent velocities when

coupled with the minimum thicknesses. Considerable improvement is gained through

the use of higher-than-minimum thickness, as shown by the weight curves for h equals

10, 20, and 30 inches.

The selection of crushup thickness was made on the basis of compatible vehicle design,

producibility and payload volume requirements, since all strokes larger than the minimum

will limit deceleration rates to below 125g. Each vehicle that was designed, therefore,

is based on a different crushup thickness. In general, these thicknesses ranged from

15 to 20 inches. The crushup weight curves were cross-plotted so that weight could be

determined for vehicles of interest. These values of crushup weight are used in

optimizing the retardation system as shown in Section 5.2.3 D.

D. Retardation System Analysis

The tenuous nature of the predicted Mars atmosphere has placed tremendous emphasis

on the selection and design of the vehicle retardation system. Complicating the choice

and design of a reliable and lightweight system is the uncertainty attached to surface

pressure and the density gradient. Until better definition is made through either

preceding Mariner probes or Earth-based observations, the retardation systems

recommended for the Voyager Entry/Lander must be designed to operate successfully

throughout a range of predicted atmospheres.

The retardation system, as well as the vehicle trajectory analysis, has been based upon

entry into the group of atmospheres based on Kaplan's work and issued in the JPL

Interoffice Memo 313-1222; namely, group 2, atmospheres G-K. Density profiles of

these atmospheres are shown on Figure 5.2-6. The 11 mb-A model represents the

severest atmosphere from a retardation standpoint since it allows the deepest

penetration into the atmosphere in the shortest amount of time.
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Although aerodynamic retardation removes a significant portion of the vehicle's velocity

(90-98 percent), it is not sufficient to allow the vehicle to land on the surface of Mars at

reasonable impact velocities. Terminal, or equilibrium velocities are very nearly

reached in the 30 mb atmosphere regardless of the entry path angle; however, equilibrium

velocity is approached in the 11 mb atmosphere only for very shallow entry path angles.

A worst case entry, 90 degree path angle in the 11 mb-A atmosphere, results in an impact

velocity of approximately 2700 ft/sec. Hence, there is a requirement for supplementary
retardation.

The selection of the vehicle's ballistic parameter is closely associated with the retarda-

tion system selection, as is the range of acceptable entry path angles. This subject

was treated in Section 5.2.2B and is based upon the selected retardation system which
is presented in this section.

It is recognized that a number of retardation schemes are available both for high

altitude and terminal deceleration. In past studies, it has been shown that high

altitude retardation by retroroekets is a very costly method of decreasing the vehicle's

velocity. Therefore, most emphasis has been placed on terminal retrorocket retarda-
tion methods.

As was shown in the Voyager Titan IIIC Study Report, although use of parachutes plus

crushup provides the most passive and hence the most reliable system, the weight

becomes excessive. It was shown that a combination of a supersonic decelerator

parachute, terminal parachute(s), small impulse retrorocket, and crushup material

proved to be the best approach for terminal retardation. Recently, there has been

interest indicated in the throttleable retrorocket of the Surveyor type. This system

was not recommended previously because of the added complexity associated with this

method. Further analysis shows that velocity errors due to system tolerances can be

fairly large. Therefore, shock attenuation material to account for the additional descent

velocity is required. For vehicles that utilize landing legs, the weight penalty of the

crushup is not great. However, if the crushup is applied over a large frontal surface,

as it is on the proposed Lander, the weight penalty becomes sizeable.

Since controllable retrorockets were not studied on this program, a fair comparison can

not be made. Controllable retrorockets will gain acceptance once the Surveyor is shown

to be successful. The sophistication of this system might look attractive for post

Voyager missions, particularly ff the atmosphere is found to be llmb or lower.

1. Optimization of Retardation System

Optimization of the retardation system on the basis of weight as a function of descent

velocity is possible. Parachute weight will decrease with higher terminal descent

velocities, whereas retrorocket and crushup weight increase with increasing terminal
velocity requirements.
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The decelerator parachute is sized to allow a vehicle to decelerate from Mach 2.5 to
Mach 1.0 between20,000 feet and 10,000 feet altitude in the 11 mb atmosphere. The
weight of this parachutecan be expressedas:

I

I
WTDE C 0. 0187 W (unflapped Landers)

e

WTDE C : 0. 036 (We - Wfl) - 103 (flapped Landers)

where W is the entry weight of the vehicle and Wfl is the weight of the extensible flare
assembly e.

The total main parachute weight can be approximated by the expressions,

%
WTcH = 149 V2 (unflapped Landers)

3O

152

WTcH = 2
V30

where V is the terminal descent velocity in a 30 mb atmosphere. Sufficient retro-
30

rocket impulse is added to make the impact velocity nominally zero in the 30 mb

atmosphere. Figure 5.2-32 shows the ratio of rocket weight to vehicle weight as a

function of delta velocity. Figure 5.2-33 shows the velocity relationship between a

30 mb atmosphere and a 11 mb atmosphere. If the Lander encounters an 11 mb atmosphere,

its impact velocity would be the difference between the velocity in the two atmospheres

since the retrorocket would have removed that portion corresponding to the 30 mb

descent rate. Crushable material is added to account for this residual velocity at impact

Crushup weights as a function of impact velocity for a range of Lander weights are shown

in Figure 5.2-27 to 5.2-31.

I

!

I

I

(W e - Wfl - WDEC) (flapped Landers) I

I

I

Choosing several terminal descent velocities, an optimization curve can be made for each

Lander weight. Figures 5.2-34 to 5.2-38 show such curves for Landers which carry the

five specified scientific payloads. Optimum descent velocity in the 30 mb atmosphere

is approximately 65 ft/sec for the range of vehicles considered.

I

I
I

I
2. Error Analysis

The above weight trade offs are based on nominal descent and landing operation. It is

realized, however, that the use of retroroekets and the associated altitude sensing and

initiation procedures will give rise to tolerances on these systems. Any increase in

impact velocity must be accounted for by a proper increase in crushup material. The

following tolerances have been selected for the purposes of identifying typical system
effects:

I

I

I
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Retrorocket burning time 10 percent

Retrorocket total impulse constant

Retrorocket initiating
altitude 1 ft or 3 percent whichever is

greater

Parachute descent velocity ± 3 ft/sec

Two combinations of these tolerances provide the largest increases in impact velocity.

They are 1, the combination of longer burning time (+10 percent}, lower initiating

altitude (-1 ft or -3 percent} and a higher descent velocity (+3ft/sec} that result in

incomplete burning at impact and 2, the combination of shorter burning time (-10 percent},

higher initiating altitude (+1 ft or +3 percent}, and decreased descent velocity (-3 percent}

which gives retrorocket burn out before reaching the surface.

Figure 5.2-39 shows the actual impact velocities which could occur in the 30 mb atmos-

phere vs nominal retrorocket burning time. Condition 1 is the more severe case with

impact velocities ranging from 31 to 41 ft/sec from a design nominal of zero. Figure

5.2-40 is an identical plot shown for the 11 mb atmosphere. The crossover point of the
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Figure 5.2-32. Lander Retardation Motor _V versus Wt of Motor/Wt of Vehicle

5-65



320

300

13Q
_1
v

I- 280
"r
(.9
I.d

_; 260
hi
t'-
(/)
>,-
tJ1

L9 240
Z
Q
Z

--J 220

200

0

5-66

300

/
250

- /q_
w LL 200
_>_

zw
w"r
(-_o_ 150 /
(/_ (/) /LIJO

<_ I00
Z J=

-- 50

/
0 50 I00 150 200

TERMINAL DESCENT VELOCITY

IN 30rob ATMOSPHERE (FT/SEC)

Figure 5.2-33 Terminal Velocity Relationship,
11 mb and 30 mb Mars Atmosphere

\

\

I0 20 30 40 50 60 70 80

DESCENT VELOCITY IN 30rob ATMOSPHERE (FT/SEC)

Figure 5.2-34 Landing System Optimization (1563 Pounds)

90 I00

I
I

I
I

I
I

I

I
I

I
I

I

I
I

I
I

I
I

I



I
I

I
I

I

I

I
I

I
I

I
I

I

I
I

I
I

I

I

_J

I-
-1-

bJ

I.LJ
I-"

>-

z

z

...I

6OO

550

m
1]

1-

500

_E
tu 450
I-
(/)
>-
oo

E3
z 400

0
Z

_J

350

0

I000

900

800

700

600

500

0

I0 20 30 40 50 60 70 60 90 I00

DESCENT VELOCITY IN 50rnb ATMOSPHERE (FT/SEC)

Figure 5.2-35 Landing System Optimization (2231 Pounds)

jJ

I0 20 30 40 50 60 70 80

DECENT VELOCITY IN 30rnb ATMOSPHERE (FT/SEC)

90

Figure 5.2-36 Landing System Optimization (3576 Pounds)

I00

5-67



2000

•-" 1900
m
--I

I'-
-r
(.9 1800

M,I

=Z
I¢1
i- 1700
¢/)
>,,

(.9

Z 1600

z

.J

.J

I-
"I-

LIJ

=E
WJ
I--
U)
>-
(/)

(.9
Z
(3
z
<t
.J

5-68

1500

1400

4000

3800

3600

3400

3200

3000

2800

I

I0 20

DESCENT

Figure 5.2-37

I
I

I
I

!

o !

!

!

!

!

!

___ |

I0 20 30 40 50 60 70 80 90 I00

DESCENT VELOCITY IN 30mb ATMOSPHERE(FT/SEC)

Figure 5.2-38 Landing System Optimization (22,800 Pounds)



I

I
I

I

I

I
I

I
I

I
I

I

I
I

I

!

i
0 0 0 0 0 0 0
_0 _r; _I" lO 0_ --

10:IS/1.-I) AIlOO7_IA lOVdl_ll

0

r_
0

,.o

0

v

0_

._.-_

bO

m

o
0

o

o
m

-_,.I

0
Z
r/l

m

4-)

0

i

_4

!

! 5-69



5-70

0 0 0 0 0 0
_. _) _ _- _ 0J

(035/1=I) AIIOO73A lOYcll_ll

o

I

I
o

Ig

o _ |

o _ _

z 2

o z _
!

_ • |

I
0 o

i

I
I



I

I two tolerance conditions sets the optimum nominal burning time. Maximum impact

velocities are upwards of 60 ft/sec. Since this is higher than the 30 mb case, it should

_1 beusedto sizetheadditionalrequiredcrushup. ForeachspecificLandercase, thedifference between this velocity and the nominal impact velocity without tolerances

i: I{I would give a delta crushup weight obtained from Figures 5.2_27 to 5.2-31.
:i Figure 5.2-41 presents the relationship of the nominal retrorocket burning time with

initiation altitudes.I

i i _ A second iteration would now take place since the addition of crushup material would

I tend to move the optimum descent velocity in the 30 mb to somewhat smaller values.

The new optimum velocities would be used in a new error analysis.

Figure 5.2-42 is a summary curve of total retardation system weight vs initial weight
I at the start of the retardation sequence. For Landers without flares, this is equivalent

I to the entry weight. For the extensible flapped vehicles this is the entry weight minus
the flare assembly weight. To facilitate the synthesis of the basic Lander vehicle, total
retardation weight is plotted as a function of entry weight in Figure 5.2-43. Total re-

tardation weight includes the parachutes, retrorocket, crushup (including tolerances)

' _ and necessary sensing equipment and hardware. Figure 5.2-43 is based on two

i iterations of the optimization.

: I 400 _11 M:

; I'- 250 2,500,5,00:)5,000

i

i 200

, I -oo

• ,.o ,.5 2.0 z.5 3.0 3.5 4.0 4.5 5.0
NOMINAL RETROROCKET BURNING TIME (SEC)

Figure 5.2-41. Initiating Altitude for Nominal Retrorocket Burning Times
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E. Ground Orientation

Several design studies were undertaken to determine feasible methods of providing

proper Lander orientation once it arrived on the Martian landscape. As in the Titan IIIC

Study, the concept selected for prime emphasis is the clamshell configuration. This con-

figuration assumes that the Lander will impact nose down and tumble an unknown number

of times.

That this is a virtual certainty stems from a stability analysis which results in the

expression _ h > S, where

[2] [ +w ls= 00397v02+_ +in2 +t_
_.+,.] \_]

where

v = vertical impact velocity(ft/sec)
D

v = horizontal (wind) velocity (ft/sec)
w

= ground slope angle

_h = rise of Lander center of gravity in feet referred to a horizontal datum and

is found graphically by rolling the vehicle outline on the required slope,

See Figure 5.2-44.

Figure 5.2-45 summarizes this result. For example, at v D = 40 ft/sec, v w = 40

ft/sec, and _ = 30 °, the graph indicates that $ h must be greater than 100 feet.

Reducing v w to 10 ft/sec and noting the approach of the v w to an asymptote no
matter what the minimum value of v D, indicates that _ h > 3 feet. On a 30 ° downslope,

h as measured on the vehicle is on the order of one to two feet. The conclusion is

that the vehicle will tumble under almost all circumstances when the direction of v w

is in the direction of the 30 ° downslope.

Two distinct external configurations have resulted as a part of the design studies.

One is a flatback design with crushup arranged in a hemitorous around the back cover

which acts as a rugged honeycomb tension membrane. The other is a spherical dome

with crushup required all over the surface.

The flatback design is inherently more efficient since the cover need not be designed

to resist backside impact nor does it require crushup all over the aft surface area.

The roundback design is dictated by an increase in required power and payload volume

within boundaries set by shroud limitations. The cover must be rugged enough to

withstand loads of the same order of magnitude as the nose but whose orientation is

quite unpredictable. Figure 5.2-46 indicates the magnitude of backside impact
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velocity. Crushup over the entire surface is required because of the uncertain direction

of backside impact load application.

Final resting position will be upright or upside down but not on its side. If the vehicle

comes to rest on its nose, as shown in Figures 5.2-47 and -48, stabilization legs will

be deployed first, the aft cover unlatches and then is driven apart from the main body

like a clamshell. If the Lander comes to rest on its back, as shown in Figures 5.2-49

and -50, the aft cover will be deployed first. Telescoping stabilization legs will be

actuated only when the vehicle has first righted itself. Stabilization legs will be

deployed in the following sequence:

A sensor will indicate the leg at the lowest elevation. That leg will be

deployed first. The other three legs will be deployed in order of relative

level. This will prevent the vehicle from tipping on a slope. Length and

location of legs are shown on Figure 5.2-51. Legs are not deployed to

their full length, but only until resistance is met.

This principle will work in all cases except that in which the vehicle comes to rest

on its side and on the half circle opposite the hinge. Consideration of vehicle geometry

and landing dynamics indicates the improbability of this occurrence. If it is desirable

to preclude this possibility the addition of a motor driven push rod opposite the hinge

will accomplish a reorientation to a more favorable attitude.

A choice of two drive systems is possible for initial orientation. These are geared

servo motors or a multiple screw jack arrangement, both capable of high mechanical

advantage and reliability. Geared servo motors are shown on the Lander drawings.

Many methods of anchoring the vehicle, such as harpoons, folding legs and telescoping

legs, were considered. Telescoping legs were used in this study. They proved to be

the most workable system within design constraints. Harpoons, for example, depend

upon soil conditions and ground slope, both of which are difficult to assess accurately

prior to landing. The legs chosen can provide the lander with resistance to over-

turning during deployment (Figure 5.2-51) and while there is a wind loading the

the Communications Antenna (Figure 5.2-52). In addition, they can be stowed

entirely within the Lander's structural shell during impact.

The communications antenna will then be deployed and oriented to the Mars north-

south axis. Initial orientation will be by means of a set of mechanical axes separate

from the equatorial axis system used to track the earth. This will allow the equatorial

axis system to be designed with low power, long life and high reliability for a limited

function while the deployment axis system will be capable of the higher speeds and

loadings required during the initial alignment phase but will not be required to last

the lifetime expected for the equatorial mount.
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The television camera is mounted on the same mast as the Communications Antenna

but separately oriented to a local vertical.

RTG power supplies are attached to the aft cover and are deployed with it. It should

be noted that the combined weight of the aft cover and RTG's is substantially less than

the main portion of the vehicle. Experiments will be deployed individually as required.

The bulk of the scientific payload will remain in the Lander nose. Only sensors and

samplers will be deployed.

F. Extensible Drag Flaps

In order that a W/CDA of 15 lbs/ft 2 be maintained and vehicle base diameters be limited
to 20 feet, use was made of the extensible flare assemblies. These flares were first

shown as a design solution in Reference 1 and were used for the Landers designed as a

part of the Voyager Titan IIIC Study.

For the present study, several vehicles requiring extensible flares were studied to

determine design characteristics and weight.

Figures 5.2-53 and -54 show a typical Lander utilizing extensible flares in the open
and closed configuration. Each flap assembly has the same 20-feet core diameter.

The length of flap is governed by the relationship shown in Figure 5.2-55. Based

on preliminary aerodynamic analysis on flapped vehicles, a flap effectiveness of

85 percent was used for this study.

The extensible flare assembly is comprised of four drag flaps, a center support

structure, deployment mechanisms and associated hardware. The basis of analysis

was essentially that of determining a suitable structure to support the beam loads

carried by the flaps. Since a first approximation resulted in very high flap weights,

several refinements were necessary. The enusing design utilizes a relatively

deep beam cross section hinged at the inboard end and supported with compression

struts at the 70 percent point to equalize the positive and negative bending moments.

A sufficient number of spars and ribs tie the upper and lower honeycomb plate covers

together to enable the maximum benefit of the inertia relief loadings to be utilized.

The remaining support structure was then designed to suit the loads and geometry.

Figure 5.2-56 shows a typical flap cross section. The resulting total weight as a

function of equivalent aerodynamic base diameter is shown in Figure 5.2-57. Heat

shield material is provided on the inside surfaces and edges as well as the outside

surfaces to protect the structure for entry at design conditions.

G. Pre-Entr_ Systems

Three items that are no longer useful to the Lander at entry and, therefore, are

discarded before this time, comprise the pre-entry systems. Included are the:
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1. Spin stabilization system

2. Delta velocity (A V) rocket and adapter

3. Transit space radiator

I. Spin Stabilization

The successful flight of the Lander requires the transfer of the vehicle from a hyper-

bolic flight path to an elliptical trajectory which intersects the planet. This transfer

is achieved by the addition of an incremental velocity to the Lander at a predescribed

position along the hyperbolic orbit. While the Spacebus control system can align the

Lander intitally to the proper orientation for velocity addition, during and following

separation the vehicle may be subjected to unwanted torques which destroy this

orientation, with the result that the desired velocity and direction are not attained.

The motion of the vehicle may be contained by spinning the vehicle about its longitudinal

or thrusting axis. The gyroscopic forces associated with spin prevent the vehicle from

tumbling and thereby permit the attainment, within limit, of the desired velocity vector.

In addition, spin stabilization insures proper vehicle attitude at entry.

Preliminary studies have been conducted (see Voyager Design Study, Volume IV,

Section 1.3.2-J) to determine the effects of tip-off errors, rotational rates, torque

times, and mass asymmetry on vehicle dynamics. Results indicate that a preferred

spin up rate lies between 40 and 80 rpm, the former associated with vehicles with

significant products of inertias and the latter choice for vehicles where no mass

asymmetries are present. Nominally, a 60 rpm spin rate and a torqueing time of

30 seconds was chosen and has been used for the six-degree of freedom trajectory

analysis.

A cold gas nitrogen system was selected for all vehicles because of its proven

reliability. Hot gas generators may be used at a weight savings of approximately
14 percent.

2. Delta Velocity Rocket

The solid propellant _ V rocket is used after separation of the Spacebus and Lander

to change the flyby trajectory to an impact trajectory. For Landers which are grouped

in clusters, a _V of 300 ft/sec is provided so that out-of-plane landings may be

accomplished. Those Landers which utilize separate buses (primarily those with a

base diameter approaching 20 feet) are equipped with SV's of 120 ft/sec, since

landing sites may be chosen by adjusting the time of arrival of the Bus. A specific

impulse, Isp, of 230 second has been assumed.
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Initiation of the unit will be from the separation sequenceprogrammer. If it is found
necessary, thermal control of the motor canbe provided. The _V rocket and support
structure is separatedfrom the Lander by firing three pryotechnic bolts andis given
a differential velocity by compression springs.

3. Transit SpaceRadiator

The space radiator provides a heat sink for the RTG during the trans-Mars flight.

During entry, however, the radiator becomes ineffective and an internal evaporative

heat exchanger is used. The radiator is built as a part of the support adapter which

attaches the Lander to the Bus structure. Just prior to entry, the radiator/adapter

is ejected from the Lander. Estimates of weight have been made as a function of

RTG thermal output. By assigning the correct gross payload to each Lander it is

possible to relate the radiator weight to Lander entry weight.

Total pre-entry system weight as a function of Lander entry weight is shown in

Figures 5.2-58 and -59. The former is for Landers not using the flare section.

H. Lander Antenna Control

1. Introduction

To permit the transmission of high data rates from a Lander on Mars, high gain,

narrow beam antennas must be employed. The Earth based receiver must, of course,

be within the beam.

The relative positions of Mars and Earth change little from day to day. Because

Mars is spinning at a rate of about one revolution in 25 hours, however, the

position of the Earth will appear, to an observer on the Mars surface, to change

at this rate. To maintain an antenna pointing to Earth, an antenna rotation opposite

to the rotation of Mars is required. It is possible to transmit a beacon from Earth

and design a control system which will cause the antenna to track the beacon.

Alternately an optical Earth sensor could be employed. In both of these cases,

reasonably complex computation would be required to resolve the antenna error

signal into the desired gimbal motions. If an axis were to be erected parallel to the

Mars spin axis, the Earth could be tracked by rotation about this axis alone. Several

advantages ensue:

1. The complex angular resolution computations will no longer be necessary on

a daily basis.

2. An Earth beacon facility need not be tied up since a synchronous Lander

antenna drive might be used.
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3. The daffy Earth acquisition problem is virtually removed, and

4. Problems caused by Martian clouds or solar interference that would exist

in the case of optical Earth trackers are eliminated.

2. System Summary

In this section a system design is described which orients an axis of the Lander

antenna platform to the Mars spin axis. The primary problem treated is that of

determining the direction of the Mars spin axis in terms of two gimbal angles.

Details of the gimbal design and required motors are not treated here as it is

considered to be relatively straightforward and independent of the sensing means.

The system described is not necessarily the best possible; it was not selected from

an exhaustive system trade off. The chosen system demonstrates that the direction

of the Mars spin axis can be determined from a vehicle in an unknown position on

the planet, employing reasonably simple equipment.

The requirements may be stated as follows: The vehicle can land at virtually any

point on Mars. For this system the polar regions are excluded when they are in

perpetual darkness. This restriction is not considered serious since it is an unlikely

landing area. The landing position on Mars is unknown to the vehicle. Likewise the

vehicle attitude is not known nor can it be measured.

The system consists of a two-axis gimbal and a computer. Each of the Timbal axes

carries a potentiometer or shaft encoder and a motor to drive the Timbal. The

direction of the Mars spin axis is computed from the two sun angles measured by the

Timbal shaft positions as the sun is tracked. After the direction of the spin axis is

computed, the gimbals are used to position the antenna rotation parallel to the Mars

axis. For example in Figure 5.2-60 (e) and (f) rotations R an _ about the Timbal

axes Y3 and Z are first used to describe the position of the sun. After the computa-
tion is complete these same axes are rotated through angles c_ and $' to position the

antenna axis of rotation.

The principle of the system may be understood from Figure 5.2-60. Sketch (a) in

Figure 5.2-60 shows inertial reference axes, with Z parallel to the Mars spin

axis w. Axis X is normal to Z and in the plane formed by Z and the line to the sun.

Sketches (b), (c) and (d) relate a set of vehicle fixed axes to this inertial set for an

arbitrary landing site and vehicle orientation. Sketch (b) shows the rotation ¢ + _t

about the Z axis required to account for landing longitude, ¢ , and landing or meas-

urement time, t. Sketch (c) shows the rotation _) about the X 1 axis which defines roll
axis elevation above the equatorial plane. In practice this angle is a function of

landing site latitude and roll axis declination from the local vertical. Finally,

sketch (d) shows the rotation _ about the Y2 axis which defines "azimuth" orientation
of the vehicle. By performing coordinate transformations through the angles described,

the orientation of the vehicle can be related to the inertial reference system.
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Now the position of the sun relative to the vehicle is measured by the gimbal

angles as shown in sketch (e). A rotation R about the Y3 axis (outer gimbal) and a
rotation _ about the Z4 or inner gimbal define the position of the sun relative to the

vehicle.

Starting with the 5th coordinate system and transforming through the angles ¢, R, (r,

_band ¢ + a_t , the inertial sun position is defined in terms of these angles. But the

position of the sun is known in the inertial system XYZ, it is:

X = S cos E
S

Y =0
s

Z =S sin E
S

These two expressions for the solar position can therefore be equated.

of the equations that follow are those used in Appendix H)

(Numbers

cos e cos ((_ + R) cos (¢ + co t) - [sin _ cos _b+ cos E sin ((r + R) sin (hi-

[sin (¢ + cot)]= cos E

cos ¢ cos (ix + R) sin ( ¢ + cot) +[sinr_ cos $ + cos ¢ sin ((_ + R) sin $].

[cos (¢ + wt)]= 0

(i)

(2)

sin (sin_b - cos c sin ((r +R) cos _ =sinE (3)

Since we are establishing the direction _f a line in space only two coordinates are needed.

Therefore, only 2 of the above equations are independent. (1) and (2) can be combined

into the more convenient form:

cos _ cos (o_ + R) = cos E cos (¢ + cot) (4)

Hence, the two independent equations are (3) and (4).

There are three unknown angles (_, _b, and (¢ + co t) with only two equations. But

(3) or (4) must be satisfied at all times so three independent equations can be obtained

by writing equation (3) a_ two distinct times.

These equations appear quite difficult to solve and would require a complex computer.
It is noted, however, that ((r+ R) must pass through 90 ° or 270 ° at the same time that

(¢ + cot) passes through 90 ° or 270 °, unless ¢ = + 90 ° • This is a special case covered

in Appendix H. Now (¢ + co t) must pass through-90 ° and 270 ° each once per day.
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When these events occur _ goes through a maximum or minimum as is demonstrated

in Appendix H. The occurrence of c or _ is computed and at this time thema× . min
preceding equations have four possible sSlutmns as follows:

¢ +o_t ___ __L

+90 -R+90 - -90-E

+90 -R-90 + +90-E

-90 -R+90 - +90+E

-90 -R-90 + -90+E

As demonstrated in Appendix H, the correct solution is determined by noting whether

E were a maximum or a minimum and by noting the sign of the time derivative of R.

The direction of the planet spin axis can therefore be obtained by measuring two solar

angles and performing simple computations. The computation is described in Appendix

H (Section H. 4).

5.2.4 BASIC VEHICLE WEIGHT

The results of Sections 5.2.3-A through 5.2.3-F can now be used to show the basic

vehicle weight as a function of entry weight. Limited to the assumptions and ground

rules presented within these sections, Figures 5.2-61 and -62 present good estimates

of the basic vehicle/entry weight dependence. The strongest par_2meter of influence
which would alter this curve is a change of W/C_A from 15 lbs/ft to some other value.

u
The ballistic parameter effect will be shown later, for specialized cases of great

interest, in Section 9.

A change in entry conditions, i.e., entry velocity and path angle will affect the heat

shield and primary structure weight. In general, the heat shield weight will increase

with decreasing minimum path angle, and the primary structure weight will decrease

with decreasing maximum path angle.
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5.3 LANDER PRELIMINARY DESIGN

5.3.1 DESCRIPTION OF LANDER SUBSYSTEMS AND SYSTEM INTEGRATION

The basic Lander configuration is a sphere cone with a bluntness ratio of 0.47 and

a cone half angle of 51.5 degrees. Mounted on the aft end of the heavier vehicles

requiring base diameters larger than 20 feet is the extensible flare assembly con-

sisting of four flaps and a flap support structure. The flap structure is light-weight

aluminum honeycomb sandwich and spar construction protected by an ESM heat shield

and ESM insulation. Flap deployment takes place in the early stages of the trans-Mars

flight and is effected by means of an actuator as shown in Figures 5.3-1 and 5.3-2.

The space radiator is mounted on the aft end of the flap support structure and is

ejected before entry on the flapped vehicles. In the unflapped vehicles it is located

at the aft end of the Lander and near the outer periphery.

The spinup system is located at the flap tips in the flapped vehicles and at the aft end

on the radiator/adapter structure in the unflapped Landers. All vehicles use a cold

gas nitrogen system.

The front end of the Landers contains an ESM heat shield as the outermost layer.

It is bonded to a fiberglass sheet which forms the outer face of the honeycomb crushup

which is the primary impact cushion. The honeycomb is fiberglass and RF transparent

to allow a clear view for the height finding radar. In the smaller Landers a lightweight

filler material is used where honeycomb crushup is not required to take the full impact
loads.

FLAPS (4)

SPIN-UP SYSTEM-

RADIATOR

LANDER
SUPPORT STRUCTURE, FLAP DEPLOYMENT

MECHANISM

Figure 5.3-1. Extensible Flap Lander - Launch Position
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PIN-UP SYSTEM

FLAPS

;PACE
RADIATOR

,RT
LANDER STRUCTURE

DEPLOYMENT
MECHANISM

Figure 5.3-2. Extensible Flap Lander - Deployed Position

Behind this and bonded to it is the basic aluminum honeycomb shell structure with

stiffening rings and structural splices. A stiff aft ring is provided for taking heavy

loads such as parachute snatch loads, secondary impact loads, and bus pickup

support points.

Two versions of the aft cover are shown for different vehicles in Table 5.3-1.

TABLE 5.3-1 AFT COVER VARIATIONS

Figure No. Title

Flatback Design

5.3-3

5.3-4

5.3-5

5.3-6

Rotmdback Design

5.3-7

5.3-8

250 -pound Scientific Payload

500 -pound Scientific Payload

1000 -pound Scientific Payload

1760 -pound Scientific Payload

2500 -pound Scientific Payload

5000 -pound Scientific Payload
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The flatback design has a number of advantages over the roundback design. Crushup

is located in a hemitorus around the periphery which relieves the aft cover from

having to support direct impact loads. It also places the crushup where it is most

effective. The roundback design becomes necessary as more equipment volume must

be provided while lander diameter at impact remains relatively fixed. Both covers

are aluminum honeycomb sandwich construction with an ESM insulation. The round-

back design also has honeycomb crushup all over the exterior surface to absorb tumb-

ling impact. Release of the aft cover is accomplished in the case of the flatback by a

double redundant shaped charge while in the roundback, explosive bolts are utilized.

The _V rocket is centrally located on the aft cover and is supported either by a

strongback used to deploy the flatback cover or the domed aft cover directly. Around

the _V rocket is the protective canister which houses the deceleration and main chutes

as well as the lander retardation rocket. The canister is ejected as the main chute

is deployed.

An internal equipment shelf is provided for mounting the scientific payload. It will

also serve to support the high gain antenna and RTGs during impact and tumbling.

Shelf construction will be of honeycomb sandwich panel design. Although aluminum

is considered the structural material at present, beryllium possesses a combination

of structural and neutron shielding characteristics which make it an attractive consid-

eration.

Bus pickup points are located on the aft ring and support the lander from the Bus with

minimum eccentricity in the flatback design. On roundback designs, pickup points

are combined with both the aft ring and equipment shelf structure with attachments

for external support either through the heat shield, the aft cover or both. Front

attachments through the heat shield will be covered by ESM doors which will close as

the Lander and Bus are separated, forming a continuous heat shield for entry.

5.3.2 LANDER DESIGN FEATURES

Scientific payload is sized on the basis of a mean density of 20 pounds per cubic foot.

Use of the radioisotope thermoelectric generators (RTG} requires this volume to be

apportioned throughout the vehicle in regions where the total dose will be less than
104 rads. Relaxation of the 104 rad dose restriction will result in increased scientific

and gross payload volume and greater location flexibility as indicated in Figures 5.3-3

to 5.3-8. Scientific payload will be supported by both the equipment shelf and the
vehicle structure.

Deployment mechanisms will be required to deploy stabilization legs, aft cover and

high gain antenna as described in Section 5.2.3 (E) and Figures 5.3-3 to 5.3-6. Servo

motor driven gear boxes are shown on these layouts but provision also has been made

for screw jack actuated mechanisms. Positive mechanical drives, rather than hydraul-

ic, have been selected because they offer a well developed solution to the problems that

will be encountered during space flight, through impact and operation on the Martian

surface.
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5.8.3 POWER SUPPLY

RTG power sources present a unique packaging problem. The 104 rad total dose

limitation on electronics and scientific payload represents an estimate of existing

I state of the art in electronic device technology. RTGs are located on the aft cover
in all cases and are deployed with the aft cover to separate the high intensity radia-

tion field as far as practicable from the payload while the Lander is operational.

I Nominal size Landers up to approximately 2500-pound scientific payload do not

require shielding. Larger Landers and those with above nominal electrical power

t supplies require shielding. This is primarily due to the _[vailable volume not
increasing as rapidly as the volume enclosed by the 104 rad lines. Refer to Figure

5.3-9 for an estimate of shielding required.

I Less sensitive equipment such as gas storage containers, structure, and deployment

mechanisms are placed within the 104 rad volume to increase volume available for

I sensitive payload. These items can easily tolerate doses greater than 107 rads with-
out any deleterious effects. All scientific payload is considered sensitive. Other

equipment is located according to its radiation tolerance.

I To provide adequate clearance for aft cover deployment, it is necessary to redistri-

I bute the cooling fin area as shown in Figure 5.3-8 and other large Landers. For dis-cussion of highly sensitive devices see Section 8.2.
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Figure 5.3-9. Radiation Shield Weight Requirements
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5.3.4 PARACHUTE PACKAGING ARRANGEMENT

Both deceleration and main parachutes are stored on the aft cover in all cases.

A lightweight canister, which is ejected as the main chutes are deployed, is provided

for their protection during space flight and entry phases of the mission. Also enclosed
in the canister is the retardation rocket.

5.3.5 ANTENNA MOUNTING CONSIDERATIONS

The largest single piece of equipment on a Lander is the high gain communications

antenna. Its function is primary communication back to Earth, which requires it to

track the Earth. The drive system proposed to accomplish this function is an

equatorial mount, one axis of which corrects for declination, the other axis of which
corrects for Mars rotation.

The antenna is stored within the vehicle until after the vehicle is stabilized as discussed

in Section 5.2.3 (E). It is then erected and aligned to the Mars north-south axis by

means of a two-axis orientation system which is separate from the tracking function.

A folding feedhorn is utilized in the smaller sizes for more compact packaging as

shown in Figure 5.3-3. Deceleration loads at impact require the antenna to be

supported by the internal brackets as well as the deployment boom. A rigid mounting

bracket is provided to fix solidly the deployment boom to the lander structure.

An omnidirectional encapsulated turnstile antenna is provided for a low bit rate com-

munications link before and after entry, but before impact. It requires a clear

20 degree back look angle. A pop-up mast is provided for this purpose. The mast and

antenna are ejected just prior to impact to minimize any potential hazards such as a pro-

truding object might present. Another identical antenna is located inside the vehicle.

Its function is to provide a backup communications link with the Earth.

The high-gain antenna boom also supports a television camera. The camera is oriented

to an essentially local vertical and is capable of continuous azimuth and limited eleva-
tion rotation.

5.3.6 LANDER SYSTEM BLOCK DIAGRAM

A general system block diagram is shown in Figure 5.3-10 and is applicable to all

vehicles considered in the parametric study. The spacebus interface is not shown since

this could be different for the Clustered and single Bus combinations.

5.3.7 LANDER SUMMARY WEIGHT STATEMENT

A preliminary weight statement of the five vehicles sized to carry the 250, 500, 1000,

2500 and 5000 pound payloads with the nominal subsystems is presented in Table 5.3-2.
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The sixth vehicle shown (scientific payload of 1760 pounds) has a size based on a diam-

eter of 20 feet since this was found desirable from a Bus/shroud standpoint. Additional

weight analyses and results for other cases are presented in details in the following
Section.

TABLE 5.3-2. LANDER AND LOAD SUMMARY

General Unit

Scientific Payload Ib 250 500 1000 1760 2500 5000

Gross Payload lb 739 1138 1850 2842 3978 7235

Lander Gross Weight (WG) lb 1675 2396 3846 6192 10,400 24,260

Entry Weight (WE) lb 1563 2231 3576 5900 9850 22,800

Base Diameter (DB) ft 10.30 12.33 15.60 20.00 25.70 39.35

Nose Radius (RN) ft 2.42 2.90 3.67 4.70 6.04 9.25

Scientific P/L Nominal Power watts 60 162 345 576 805 1425

Communication Nominal Data Rate bps llO0 2000 3700 6000 8000 15,000

Antenna Dish Diameter ft 4.90 5.70 6.70 7.55 8.10 9.50

Weight Estimates lb

Heat Shield lb (103) (143} (205) (360} (352} (310}

Structure lb (207) (245) (423) (806) (735) (605)

Shell (Frustrum) Ib 74 108 218 461 383 255

Internal Structure lb 133 137 205 345 352 350

Aft Cover lb (124) (154) (218) (395) (690) (900)

Honeycomb Structure Ib 35 51 86 145 175 275

Heat Shield lb 16 21 40 65 45 48

Aft Crushup lb 73 82 92 185 470 577

Retardation lb (239) (377) (618) (1158) (1615) (3230)

Crushup Ib 122 204 353 708 972 2135

Deceleration Chute lb 26 42 67 110 171 343

Main Chute lb 39 68 108 202 313 508

Retro lb 32 43 68 110 131 214

Hardware and Control lb 20 20 22 28 28 30

Ground Orientation lb (152) (174) (262) (339) (380) (470)

Stabilization Legs lb 71 78 137 165 175 210

Strongback & Deployment lb 53 65 90 120 140 185

Drives, Controls & Hardware lb 28 31 35 54 65 70

Extensible Flare

Flare Structure (Incl.Heat Shield)

Support Structure & Deployment

Ib - - (2100) (10,050)

lb - - 1561 7325

lb - - 539 2725

Gross Payload lb (739) (1138) (1850) (2842) (3978) (7235)

Scientific Payload lb (250) (500) (100O) (1760) (2500) (5000)

Power Supply lb (123) (206) (287) (475) (642) (1080)

RTG lb 40 74 131 195 260 437

Battery lb 37 62 109 162 217 363

Controls & Hardware lb 46 70 100 118 165 280

Communication lb (268) (303) (348) (490) (422) (496)

Electrical Components lb 151 170 191 218 222 253

Antenna & Mounting lb 72 88 112 133 148 183

Hardware Ib 45 45 45 49 52 60

Thermal Controls Ib (98) (129) (162) (207) (244) (359)

Electrical Components

& Coolant lb 65 85 108 140 160 235

Redundant Pumps lb 10 14 15 16 16 20

Heat Sink Wax-Battery Ib 10 11 19 28 38 64

Hardware lb 13 19 20 23 30 40

RTG Radiation Shielding lb - - - (170) (300)

Moments of Inertia(Estimated)

Ixx(Roll) slug-ft 2 189 474 1382 3271 12,243 101,870

Izz (Yaw) slug-ft 2 161 318 731 1799 7385 34,635

Iyy (Pitch) slug-ft 2 186 350 817 1861 7675 34,623

Longitudinal Center of

Gravity (from Stagnating Point) ft 2.9 3.4 3.4 4.6 5.8 9.4
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5.4 PARAMETRIC WEIGHT RESULTS

5.4.1 GROSS PAYLOAD CAPABILITY

I

I

Comparisons of gross payload yield as a function of Lander entry weight are pre-

sented in Figures 5.4-1 and 5.4-2. Similar comparisons between gross payload and

Lander gross weight are shown in Figures 5.4-3, 5.4-4, and 5.4-5.

Lander gross weight is defined as the Lander entry weight plus radiator, spin system

and _ V rocket. All Landers use a cold gas spin system. The smaller Landers in

clustered configuration use a _ V of 300 ft/sec, while the larger Landers with sepa-

rate Buses use a & V of 120 ft/sec.

I

I
I

I

I

I

As shown in Figures 5.4-2 and 5.4-5, the gross payload yield for extensible flare

Landers starts to level off as Lander weight increases and gross payload reaches

a maximum of 7,280 pounds at a Lander entry weight of 23,700 pounds (25,250

pounds gross weight). This leveling off in gross payload results from the decrease

in overall weight efficiency as flap length is increased to obtain greater effective

base diameters. As Lander weight is further increased beyond an entry weight of

23,700 pounds, the increase in extensible flare weight becomes greater than the

increase in Lander weight and therefore subtracts from the gross payload capability

(see Section 5.2.3(F) for design of extensible flare). I
3500
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Figure 5.4-1. Gross Payload vs. Lander Entry Weight
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5.4.2 GROSS PAYLOAD TABULATION

Tabulations of estimated gross payload weights are presented in Tables 5.4-1, 5.4-2,

5.4-3, 5.4-4 and 5.4-5 corresponding to scientific payloads of 250 pounds, 500 pounds,

1000 pounds, 2500 pounds and 5000 pounds, respectively.

Within each table, gross weights have been estimated for each of three scientific

payload power levels at each of three communication data rates for a total of nine

cases.

Communication Data
Case Scientific Payload Power Rate

1 Minimum Minimum

2 Minimum Nominal

3 Minimum Maximum

4 Nominal Minimum

5 Nominal Nominal

6 Nominal Maximum

7 Maximum Minimum

8 Maximum Nominal

9 Maximum Maximum

The scientific payload power and communication data rate, as a function of scientific

payload weight, are defined in Section 4.1.

Having established the power requirements for each case, the weights of the various

subsystems (power supply, communication, and thermal control) were estimated

as well as the requirement, if any, for RTG radiation shielding.

Some Landers require shielding of the RTG when power levels exceed certain values

in order to maintain dose rates at a safe level within the payload volume. This

problem is discussed in Section 5.3.3.

Each of the gross payload weights shown in the above tables may be directly con-

verted into a Lander entry weight and Lander gross weight by using the graphs in

Section 5.4.1. It is noted that the maximum gross payload capability of Landers in

this study is 7280 pounds at an entry weight of 23,700 pounds; therefore, the lasf

four cases shown in Table 5.4-5 for a scientific payload of 5000 pounds cannot be

integrated because they exceed the maximum capability.

5.4.3 SCIENTIFIC PAYLOAD VERSUS GROSS PAYLOAD FOR NOMINAL-

NOMINAL CASE

s

Figure 5.4-6 presents the gross payload weight as a function of scientific payload

weight for nominal levels of scientific payload power and communication data rate.

This corresponds to a plot of Case 5 from each of the tables in Section 5.4.2 and

permits interpolation of any desired scientific payload between 250 pounds and 5000

pounds.
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Similar plots may be made for each of the remaining eight cases in Section 5.4. 2,

thus covering off-nominal conditions.

5.4.4 SCIENTIFIC PAYIA:)AD MATRIX

The results of the parametric weight study are shown in matrix form on Tables

5.4-6, 5.4-7, 5.4-8, 5.4-9 and 5.4-10. These tables correspond to scientific pay-

load weights of 250 pounds, 500 pounds, 1000 pounds, 2500 pounds and 5000 pounds,

respectively. The matrices translate the gross payload tabulations in Section 5.4. 2

into corresponding Lander entry weight (WE) and Lander gross weight (WG) for each
of the cases studied.

Each of the matrices may be interpolated to obtain Lander weights for varying

scientific payload powers and communication data rates (the general synthesis pro-

cedure described in Section 5.4. 5 may also be used).

Once the entry weight is known, the base diameter of the Lander may be obtained

by referring to Figure 5.4-7. Also given are the related base diameters up to

an entry weight of 5900 pounds, which corresponds to a base diameter of 20 feet.

Beyond this point, extensible flaps are used. A curve is also shown for the flap

length of these vehicles. Refer to the drawings in Section 5.3.1 for overall vehicle

lengths for the five specific vehicles shown there.
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Figure 5.4-7. Lander Base Diameter and Extensible Flare Length

5.4.5 GENERAL METHOD FOR LANDER WEIGHT SYNTHESIS

It is possible to determine the Lander entry weight and Lander gross weight for any

scientific payload weight within the limits of scientific payload power and communica-

tion data rate analyzed in this study.

The following procedure may be followed for synthesizing a Lander once the desired

scientific payload weight, scientific payload power and communication data rate

are established. The range of scientific payload power and communication data

rate as a function of scientific payload weight are given in Figures 4.1-1 and 4. 1-2,

respectively. The procedure is not applicable to alternate Lander designs as pre-

sented in Section 9.2.

Referring to the discussion in Section 1, Figure 5.4-8 shows the base load power

required as a function of scientific payload weight while Figure 5.4-9 gives the

communication power as a function of the data rate. Addition of the base load power

and communication power to the scientific payload power will yield the total Lander

power output required. Figure 5.4-10 gives power supply subsystem weight as a

function of total Lander power output. Similarly, the thermal control subsystem

weight may also be obtained from Figure 5.4-10 based on the electrical power sup-

ply. The weight of the communication subsystem as a function of data rate is given

in Figure 5.4-11.
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TABLE 5.4-6. 250-POUND SCIENTIFIC PAYLOAD

o
0o

_°
o

tr_

¢q

o

SCIENTIFIC P/L POWER(WATTS)
25 60 125

1500 1540 1600 W E

1600 1650 1730 W G

1540

1650

1563

1675

1635

1765

W E

W G

1640 1660 1720 W E

1770 1790 1860 W
G

TABLE 5.4-7. 500-POUND SCIENTIFIC PAYLOAD

o

O

SCIENTIFIC P/L POWER (WATTS)
27075

1960

162

2080 2265 W E

2275 24302140 W
G

2055 2231 2315 W E

2240 2396 2525

2310

2520

2440

2660

2575

2780

W G

W E

W G
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The gross payload weight can now be obtained by adding the power supply, communica-

tion and thermal control subsystem weights to the scientific payload weight. The

synthesis process may now be completed by referring to Section 5.4.1. Lander

entry weight is given in Figure 5.4-1 (for gross payload weight up to 2842 pounds)

and Figure 5.4-2 (for gross payload weight above 2842 pounds). Lander gross

weight may be obtained for gross payloads up to 2842 pounds in Figure 5.4-3, for

separate Bus configurations (delta velocity (_V) = 120 ft/sec), or Figure 5.4-4, for

clustered configurations (_V = 300 ft/sec). Lander gross weight for gross payload

weights in excess of 2842 pounds may be obtained from Figure 5.4-5.

TABLE 5.4-8. 1000-POUND SCIENTIFIC PAYLOAD

_° O
t_

!°
O
tO

,-4

SCIENTIFIC P/L POWER (WATTS)

175 345 545

3100 3310 3620 W E

3340 3600 3920

3275

3575

3750

3990

3576

3846

3980

4300

3860

4150

4270

4620

W G

W E

W G

W E

W G

TABLE 5.4-9. 2500-POUND SCIENTIFIC PAYLOAD

°
¢q

_!°O

D o
O

SCIENTIFIC P/L POWER (WATTS)

450 805 1275

7900 9100 10,550 W E

8450 9600 11,250 W G

8500 9850 11,250 W E

9000 10,400 12,000

9650 12,20010,850

11,55010,200 13,100

W G

W E

W G
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*Exceeds

TABLE 5.4-10. 5000-POUND SCIENTIFIC PAYLOAD

L_.
_9

SCIENTIFIC P/L POWER _vVATTS_
575 1425 2350

16,200 20,350 *

17,350 21,750 *

17,600 22,800 *

18,900

20,650

22,050

24,260

W E

W G

W E

W G

W E

W G

Lander Payload Capacity

5-129/5-130



I

I

I
I

I

I

I
l

I

I
I
I

I

I

I

I
I

I

I

6. SPACECRAFT DESIGN

This section describes the bus designs to deliver the various Landers to Mars.

Buses include structure, communication, guidance and control, and propulsion.

6.1 DESIGN BOUNDARIES

The

The basic concept of the Voyager Saturn V Study was to develop parametric curves

from which systems could be configured to carry selected scientific payloads. How-

ever, even in a completely parametric study, certain boundary conditions can be set

up. The following sections will describe the system limitations which were imposed
on this study.

6.i.1 SHROUD LIMITATIONS

The shroud dimensions used for the study are shown in Figure 6.1-1. The half

angles of 12.5 degrees and 25 degrees are those normally prescribed for a shroud of

this type. The cylindrical section length is sufficient to package one Lander of

26,200 pounds. The total length of the shroud is 770 inches with the diameter being

260 inches. As a basic ground rule, it was decided to leave 10 inches per side for

clearance, thus making the maximum spacecraft diameter equal to 240 inches.

J

21.5R "_.___ T--

12.5" "_ I6-_4.8

_ 260 ZOIA._

770

L.__.t

Figure 6.1-1. Shroud Dimensions
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Figure 6.1-2 presents the shroud weight versus shroud station. Only the weight of
the cylindrical section is shownsince the weight of the upper portion of the shroud
is considered in the payload capability of the launchvehicle. The C3versus payload
weight curve shownin Section 3.2 includes the weight of the 365-inch upper portion
of the shroud.

In order to obtain a payload reduction due to boosting the shroud, a factor equal to
10percent of the shroud weight was used. Thus, for the 770-inch high shroud, the
cylindrical section weighs 7,600pounds. This equatesto a net payload weight re-
duction of only 760pounds. It is assumedthat the shroud is jettisoned at about
300,000 feet altitude.

At the beginning of the study it was plannedto package two of the 26,200 poundgross
weight Landerswithin the shroud. This packaging arrangement resulted in a total
shroud height of 1130inches.

Near the end of the program, additional information became available which put
limits on the height of the shroud. Two factors limit the shroud maximum height;
one,physical limitations of the assembly and support structures; two, booster struc-
tural limitations. After some calculations were made, it became evident that the
structural capability of the booster was the limiting factor. Precise data is not
available; however, data which is available indicates that, in general, the shroud
should not exceedabout 650to 700 inches total height. As noted before, the shroud
height selected is 770 inches.

It shouldbe emphasizedthat the selected shroud is not a Saturn V shroud design.
Rather, it is a shroud configuration within the Saturn V capabilities which is being
used in this study in order to obtain upper limits on the number andvariety of space-
craft which maybe launched.

A. Design Configuration and Structural Loads

The design configuration was established by assuming the type of construction to be

modified monocoque. (Monocoque shell reinforced by transverse frames.) This

type of construction is commonly used for shrouds, and if well designed, will usually

yield an optimum weight construction.

The frame spacing (L) was selected so as to lie in a reasonable L/R region and to

be within the applicable limits of shell methods of analysis. This resulted in the

configuration shown in Figure 6.1-3.
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Figure 6.1-3. Framing Space Configuration

Shear, thrust and bending moment curves were plotted for both the inertial and aero-

dynamic effects and are shown in Figure 6.1-4. These loads are based on data

taken from other programs which developed in detail, using the SILIC 12 computer

program, the loads for a similar shroud for a Saturn V launch vehicle. Extrapola-

tion of the available data was required in order to account for the greater length of

the Voyager shroud.

An accurate evaluation of the inertial load effects is not possible in the absence of

information on the pitching angular acceleration during attitude control. Whereas
the inertial load due to lateral acceleration will tend to counteract the effects of

aerodynamic loading, the angular acceleration will provide additional loads. For

the analysis of the shroud, since the inertial effects are an order of magnitude less

than the aerodynamic effects, the counteracting effects of lateral acceleration were

ignored and the shear and moment loads due only to aerodynamic loads were increased

by 20 percent to conservatively account for the pitching angular acceleration.

The shell thickness and the frame geometry were determined using the shell

stability method of analysis. This method consists of determining a series

of non-dimensional radial pressure and axial force factors and from these

determining the required shell thickness and moment of inertia of the frames.

The curves used are applicable to cylindrical and conical shells subjected to axial

compression, external pressure, and bending, and are based on classical theory

and empirical data. The interaction curves do not account for the superposition

of transverse shear effects. To conservatively account for this effect, shell and

frame requirements were increased by 10 percent.
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Table 6.1-1 shows the results obtained for bay A-l:

TABLE 6.1-1. TYPICAL CALCULATED SHELL AND FRAME REQUIREMENTS

Required shell thickness

Shell material

Frame moment of inertia required

Frame weight

Frame material

For bay A-8

Required shell thickness

Shell material

Frame moment of inertia required

Frame weight

Frame material

SHROUD WEIGHT

Shell weight

Frame weight

Total weight

= 0.360 inches

= Lockalloy
4

= 2.2 in.

= 1.23 lb/ft

= aluminum

-- 0.20 inches

= Lockalloy

4
= 1.21 in.

= 1.13 lb/ft

= aluminum

= 13,315 lb

= 865 lb

14,180 lb

To arrive at the total weight of the cylindrical portion of the shroud, an estimate was

made of the remaining weight due to additional stiffeners, shroud separation struc-

ture, fittings, etc. This factor amounted to an additional 20 percent.

Therefore, the total estimated weight of 765-inch cylindrical section is

14,180 x 1.20 = 17,000 pounds

The weight of the cylindrical section as a function of length is shown in Figure 6.1-2.

6.1.2 SATURN V ENVIRONMENT

Of primary importance to structural design and component mounting are the steady

state and high frequency vibratory forces encountered during launch. This launch

environment plus the transit, planetary, and orbiting environment determines the

total expected spacecraft environment.

The transit, planetary, and orbiting environments expected have been delineated in
both the Saturn C1B and Titan ]IIC studies. The launch environment expected for

the Saturn V is shown below.
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A brief description of the expected approach to handling the Saturn V environmental

forces during a structural design is shown in Appendix C.

A. Steady State Acceleration

Table 6.1-2 lists the steady-state acceleration forces encountered.

TABLE 6.1-2. STEADY STATE ACCELERATION

Event

Max g

1st Engine Cutoff

SII Cutoff

SIV Burnout

N
Z

-2.04

-i.72

-2.2

-I. 55

N
xy

0.2

$°/sec 2

1.1 0.113

m

N

XYma x

0.313

D

B. Load Factors - General

All load factors given in this section are limit loads. Limit loads are defined as

maximum expected loads including 3 _ limits. It is the usual practice to specify

ultimate loads as 1.25 limit loads for unmanned spacecraft and as 1.5 limit loads

for manned spacecraft.

In view of the fact that quotations of structural weights for preliminary designs are

traditionally lower than actual, and in keeping with the known inherent strength of
the manned-mission designed Saturn V, an ultimate load factor of 1.5 has been

specified for this study.

It should not be construed that this conservative approach is taken in order to achieve

high structural reliability, since the qualification test specifications are usually suf-

ficiently high for this purpose. What is accomplished however, is the designation of

an expected structural weight which will be sufficiently high to compensate for de-

sign changes necessitated by revisions to qualification tests levels and mission re-

quirements.

C. Dynamic Loads

Table 6.1-3 shows the Saturn V dynamic loads.

TABLE 6.1-3. DYNAMIC LOADS

Type Input CPS Level

Sinusoidal

Random

5-120

120-2000

5-50

50-150

150-2000

0.3 g Linearly to 5.0 g

5.0g

0.004 g2/cps Linearly to 0. 025 g2/cps

0.025 g2/cps

0.025 g2/cps to 0.005 g2/cps

6-7



The aboveloads are expectedflight vibratory loads and are introduced into the space-
craft at the booster interface. Testing required to prove structural integrity would
be to levels more severc than the combined loads expectedduring flight.

6.2 INDIVIDUAL-CLUSTER BUS DESIGN

At the beginning of the study, 250, 500, 1000, 2500 and 5000 pound scientific payloads

were to be studied. However, as the study progressed, it became apparent that a

more appropriate method of performing the study would be to determine the optimum

packaging for Landers and use this series of sizes for study purposes. The sizes

selected are 26,200, 13,100, 0200, 2000 and 1400 pound. The sizes quoted are

Lander gross weights. Figures 6.2-1 through 6.2-5 show the packaging of the

various Landers within the selected shroud configuration.

An end result of the study is curves of Bus weight versus Number of Landers. Data

obtained for this curve included information on Bus structure weight. In order to

obtain the Bus structure weight, bending moments, axial loads, and lateral shears

were calculated. Figures 6.2-6 through 6.2-11 provide information on the lg bending

moment for various numbers of Landers with varying cg locations. In addition, the

composite cg is shown for any selected number of Landers. Using the 0.2g limit

lateral load factor shown in Section 6.1, the inertial bending moment applied to the

spacecraft structure can be obtained. With appropriate combinations of load factors,

the steady state bending moment, lateral load, and axial load at any point on the space-

craft may be obtained.

21.5R 29

i

BUS.
770

434

Figure 6.2-1 26,200 Pound Lander
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The planned sequence of operations for the Cluster and individual Buses is shown in

Figure 6.2-12 and 6.2-13. The Cluster Bus is shown for the 1400-pound Landers

packaged in groups of four. After separation from the launch vehicle and the Launch

vehicle adapter, the attitude control nozzles and the high gain antenna are deployed.

Deployment of attitude control nozzles on booms is required because of size relation-

ship between the Landers and the associated Buses. The Buses which also act as

structural adapters are 160 inches in diameter, while the Landers are 240 inches in

base diameter for any Lander larger than 6200 pounds. Attitude control could have

been achieved by thrusting about the cg. This would have me ant applying a _ V to

the spacecraft as well as a moment. The decision was made to use couples for atti-

tude control and this necessitated deploying the nozzles so that there would be no

impingement of gas upon the spacecraft.

Separation from the Launch vehicle adapter can be by means of a Marmon clamp

arrangement, explosive bolts, or shaped charges appropriately placed to break the

structure at the separation interface.

Initial controls for the spacecraft are contained within the Midcourse Bus. This Bus

controls spacecraft motion from the time of launch vehicle separation to some time

before terminal maneuvers are needed. As indicated in sketch 3 of Figure 6.2-12,

each group of four Landers is then separated intoseparateCluster Buses. These

spacecraft have all subsystems required for operation in space. There is sufficient

fuel, attitude control, gas, and power to provide control for a trip from earth if such

was required due to a malfunction of the Midcourse Bus. After terminal guidance

maneuvers are completed, the Bus is properly oriented and a Lander is separated

from the Buses indicated in sketch 4 of Figure 6.2-12. Prior to the time of Lander

separation, the Lander has been enclosed in a sterilization capsule. This capsule

is opened and the Lander is separated. A small velocity is then applied to the Bus

and the Lander _ V engine is fired. At this time the remaining portion of the Lander

support structure is separated from the Lander as shown in sketch 5. This same

procedure is then repeated for each of the remaining three Landers.

The sequence of operation of the Individual Buses is similar to that of the Cluster

Buses. As shown in sketches 1 through 4 of Figure 6.2-13, the spacecraft is sepa-

rated into the individual Landers and Buses before the terminal correction. This

separation breaks the biological barrier which isolates the Landers until the time

of separation. The final Terminal Guidance is performed by the Individual Bus with

each Lander. Since there are no uses planned for the Bus after the Lander separates,

contamination from the Lander rocket is of no concern. The Lander will be ejected

from the Bus, spun up, and the _V rocket fired.

6.2.1 STRUCTURE

The basic structure of the Individual Buses is of aluminum semi-monocoque con-

struction. As shown in Figure 6.2-14 for the 26,200-pound gross weight Lander,
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Figz/re 6.2-12. Spacecraft Separation Sequences
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the 13,100-pound gross weight Lander, and the 6200-pound gross weight Lander, this

Bus structure provides the adapter between the Landers as well as providing support
for the Bus subsystems.

A weight statement has been made for a Bus structure which would mount on the

26,200-pound Lander and is shown in Table 6.2-1. This Bus structure is then used

for each of the other configurations as shown in Table 6. 2-2.

TABLE 6.2-1. BASIC BUS STRUCTURE WEIGHT

ITEM POUNDS

External Skin 205

Bulkheads 66

Center Plate 151

Stiffeners 32

Upper Ring 50

Lower Ring 50

Support Tees 48

Tankage Supports 40

Miscellaneous Fittings 27

Antenna Support Structure 6

Hardware (10%) 68

TOTAL WEIGHT 743 POUNDS

The adapter which attaches to the launch vehicle will vary in weight depending on the

applied loads. In the same manner, the Bus/Adapters which are located between the

Landers will vary in weight depending on the applied loads. Load paths will be

through the Lander into the Bus/Adapter, through the Lander, into the adapter and

into the booster as shown in Figure 6.2-15.

The weights of the various combinations of adapters, Bus/Adapter, and Buses are

tabulated in Table 6.2-2. This same data is then plotted in parametric form and

shown in Figure 6.2-16.

As shown in Figure 6.2-17, the Cluster Bus must support groups of Landers; in

this design, three 2000-pound gross weight Landers and four 1400-pound gross

weight Landers. The structure which supports the various Landers also serves as

the basic Bus subsystem support. In order to package efficiently groups of small

Landers (1400 and 2000-pound gross weight Landers), they must be packaged as

indicated above. The Bus structure consists of four corner posts interconnected by

webs passing through the geometric center of the four posts. The Landers in the
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sterilized condition are attached to a truss framework which in turn is attached to two

of the supporting posts. This type of construction provides a structure capable of

carrying axial loads, lateral loads, bending moments and torsion.

TABLE 6.2-2. WEIGHTS OF ADAPTERS, BUS/ADAPTERS AND BUSES

Lander

Size and No.

26,200 1

13,100 1

13,100 2

6,200 1

6,200 2

6,200 3

Adapter
Structure

(lb)

1060

Bus/Adapter

Structure

(ib)

1220

Bus/Adapter
Structure

(lb)

804

Bus

Stl-ucture

(Ib)

754

743

Total

Structure

(lb)

1803

880 - - 743 1623

1210 828 - 743 2781

837 - - 743 1580

967 754 - 743 2464

743 3521

The volume within the structure which is not occupied by the Landers will be used

for various Bus subsystems. The required subsystems and their associated equip-

ment have been positioned within the Bus as indicated in Figure 6.2-17.

Grouped in units of two or three clusters, these groups of smaller Landers can

provide a sizable payload for the Saturn V booster. Load introduction from Landers

to support structure to Bus structure to booster is shown in Figure 6.2-18.

4

.4

.4

.4

m
r

STA 0

I

_v

y_..v

N1
STA 1130

Figure 6.2-18. Load Introduction from Landers to Support Structure

to Bus Structure to Booster
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The loads from the Lander are taken at eight attachmentpoints through the heat
shield anddistributed through the adapter structures to a uniform distribution on
the Instrument Unit.

Table 6.2-3 provides a detailed weight breakdown of the Cluster Bus for the 1400-
poundgross weight Landers.

TABLE 6.2-3.
(4-1400-1bLanders)

ITEM POUNDS

Support Columns 368

Separation Clamping 24

Center Cross Bulkheads 193

Cross Beams 28

Webs (Honeycomb) 106
Stiffeners 10

Upper and Lower Rings 39

Separation Mechanisms 44

Lander Support Truss 353

Fittings 88

Hardware (10%) 125

1378 POUNDSTOTAL WEIGHT

CLUSTER BUS STRUCTURE WEIGHT

Table 6.2-4 provides a summary of the Cluster Bus structural weights for the system

configurations selected.

TABLE 6.2-4. CLUSTER BUS STRUCTURAL WE IGHTS

I

I
I

I
I
I

I

I
I

I

I
I

Lander Adapter Cluster Cluster Cluster Total

Size and Number Structure Structure Structure Structure Structure

of C lusters (lb) (lb) (lb) (lb) (lb)

2,000 1 860 1338 2198

2,000 2 1040 1338 1338 3716

1,400 1 870 1378 2248

1,400 2 1050 1378 1378 3806

1,400 3 1310 1378 1378 1378 5444

I
I

I
I

Data from Table 6.2-4 is then plotted in parametric form and presented in Figure
6.2-19.
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Because of the fact that minimum gage material was used for the Cluster Buses, the

weights of the various structures are identical as shown in Table 6. 2-4. Weight

changes in the Cluster Buses would result only if several more clusters were added

to the two and three clusters now being considered.

Figures 6.2-20 and 6.2-21 give a more detailed sketch of the booster-spacecraft

adapter and a Bus/Adapter structure. In order to mount the larger (240-inch base

diameter) Lander, it is required that there be attachment points at the heat shield

with structure extending into the Lander. Tables 6.2-5 and 6. 2-6 show certain of

the structural weights used in preparing the parametric curves.

TABLE 6.2-5. BOOSTER-SPACECRAFT ADAPTER STRUCTURE WEIGHT

ITEM POUNDS

Fittings 215

Legs 111
Skin 112

Lower-Support Frame 100

Upper-Support Frame 190

Lower-Interface Ring 120

Ring Attaching Bolts 12
Stiffeners 11

Misc. Structure 90

Hardware 99

TOTAL WEIGHT 1060 POUNDS

TABLE 6.2-6. BUS/ADAPTER STRUCTURE WEIGHT

ITEM POUNDS

External Skin 205

Bulkheads 66

Center Plate 151

Stiffeners 32

Upper Ring 50

Lower Ring 50

Support Tees 48

Tankage Supports 40

Misc. Fittings 27

Antenna Support Structure 6

Adapter Legs 78

Hardware (10%) 75

TOTAL WE IGHT 828 POUNDS
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6.2.2 GUIDANCE AND CONTROL

As with other subsystems, the approach taken in this study was to use the guidance

and control concepts described in the past studies unless the specific mission or

vehicle requirements dictated otherwise. In the case of guidance, however, the

DSIF capability is becoming better known and accuracy predictions today differ sig-

nificantly from those used in the original Saturn 1B Voyager study conducted in 1963.

For this reason, the analysis presented in Section 5.2.2 was conducted to define the

entry angle achievable for a range of uncertainties in spacecraft trajectories based

on DSIF information only. The improvement obtainable in entry angle corridor with

spacecraft-planet line-of-sight information of variable accuracy is also shown. Re-

sults of this study, coupled with recent predictions of DSIF capability, indicate that

the entry corridor required for the basic study, 20 to 35 degree entry angle, can

probably be achieved using only DSIF tracking and ground computation and command.

This is not completely certain, however, and hence a line-of-sight sensor is included

in the Individual-clustcr/Bus. To provide comparable results with the previous

Voyager studies, line-of-sight sensing is accomplished using a TV picture of the

planet against a star background. It has been estimated that spacecraft-planet line

of sight can be established to a 3 cr accuracy of 1 mill,tad,an using this system.

A. Guidance Subsystem

As in the previous Voyager studies, the Guidance subsystem consists of:

. A DSIF transponder which enables Earth-based equipment to determine the

interplanetary trajectory. Note, this is actually a mode of operation of the

Communications equipment, not a separate component.

. Three integrating gyros with their associated electronics.At the time of

guidance maneuvers (for midcourse correction, approach trajectory cor-

rection, or Lander separation) the gyros are started and given control of

the vehicle. The gyros are then torqued through the proper angles in re-

sponse to Earth commands.

. A body-mounted image orthicon camera that views the position of the planet

relative to star patterns as the planet is approached and transmits the pic-

tures to Earth at intervals. From these pictures the time profile of the

line of sight to the planet is determined, and fed into the trajectory deter-

mination computation.

Items 1 and 2 are considered to be direct counterparts of the Mariner subsystem.

The TV picture in item 3 is read into the tape recorder storage and then transmitted

to Earth via the regular data link. These are already present in the vehicle and are

not charged to the Guidance Subsystem.
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An alternative to the above is to provide data compression circuitl_¢ which reduces

the number of bits required to transmit a picture. This is accomplished by a static

core memory into which the video is fed directly. It is then read out directly to the

communication link and the tape recorder is not utilized. This is discussed more

fully in Appendix A.

The data compression feature is included in the Guidance and Control Subsystem

Block Diagram, Figure 6.2-22, and the component weight is shown in Table 6.2-7.

TABLE 6.2-7. GUIDANCE EQUIPMENT WEIGHT TABLE

Weight

DSIF Transponder

(Part of the Communications Subsystem)

Gyros and Control

Image Orthicon

TV Data Compression

(if used)

Accelerometer

Single

System

(lb)

10

22

4

Including

Redundancy

(lb)

2O

44

8

B. Attitude Control

The attitude control subsystem has the same form for all of the Saturn V vehicle

configurations as in the Titan IIIC and the original Voyager studies. Control moments

are produced by gas expulsion, with low vehicle rates achieved by derived rate logic

controlling the on-off control valves. The same basic control systemparameters,

i. e., vehicle accelerations, dead bands, loop gains, etc., are retained; with appro-

priate scaling of thrust levels and moment arms versus vehicle inertias. The block

diagram is shown in Figure 6.2-22.

The Attitude Control subsystem includes the equipment shown in Table 6.2-8.

In the case of the Bus that carries the single large Lander there is no separate

Midcourse Bus. Accordingly, this Bus should have the same reliability as is pro-

vided for the other cases by the combination of Midcourse Bus and Individual-cluster/

Bus. The redundancy required to achieve this has not been specifically identified but

will obviously be something less than a complete subsystem.
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TABLE 6.2-8.

Switching Amplifier

Logic, Storage and Relays

Power Supply*

Canopus Tracker

Autopilot

Sun Sensors

ATTITUDE CONTROL WEIGHT TABLE

Weight

Single

System

(Ib)

2.00

14. 25

20. O0

5. 50

2.00

O. 80

Including

Redundancy

(lb)

2.00

14.25

20. O0

11.00

2.00

1.60

*Also supplies Antenna Control

As in the previous studies, disturbance and control impulse values are presented

on an "as calculated" basis, using conservative assumptions. Multipliers and safety

factors are applied as appropriate in the design of the propulsion system.

One difference is observed in the operation of the Attitude Control system. For

these vehicles the vehicle accelerations due to solar pressure torques are small

compared to the vehicle dead band rates. Consequently, one-sided operation cannot

always be assumed. Limit cycle operation is indicated in most cases, which for the

system parameters assumed gives a conservative value for control impulse.

The primary attitude disturbance torque acting on the system is solar pressure.

second potential source of disturbance is the flow of liquid coolant for the RTG.

effect of these two disturbances have been analyzed and results are presented in

Appendix B.

A

The

Total attitude control impulse requirements have been calculated, based on the dis-

turbances determined for the various vehicle configurations. Figure 6.2-23 gives

the impulse requirement per axis as a function of the moment of inertia to moment

arm ratio, based on a 280-day trip. Impulse for the yaw axis is lower than pitch

primarily because vehicle attitude maneuvers are defined as roll first, then pitch.

The parameters assumed in generating these curves are:

control acceleration = 0.25 mr/sec2-

separation rates = 50 mr/sec

maneuver rate = 10 mr/sec

search rate = 3 mr/sec

minimum on-time = 30 msec

position deadband = _+4 mr

symmetrical limit cycle = 5

operation midcourse

maneuvers

reacquisitions = 5
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Table 6.2-9 gives the total impulse requirement per Bus based on a 400-day trip

for the final Bus configurations selected. Figures 6.2-24 to 6.2-28 show how these

vary with trip time.

TABLE 6.2-9. SUMMARY OF TOTAL IMPULSE REQUIREMENTS

(400-day trip)

Lander

Gross Weight

(ib)

1400

2000

6200

13,600

26,200

Pitch

Roll

Yaw

Pitch

Roll

Yaw

Roll

Pitch

Yaw

Roll

Pitch

Yaw

Roll

Pitch

Yaw

Individual Bus

(Ib-sec)

146

86

97

329

480

607

320

1407

658

916

444

2018

Cluster Bus

(Ib-sec)

125

192

83

400

137

198

93

428

Autopilot definition and performance requirements were not redetermined for this

study. It is anticipated that the rockets used for midcourse correction will not dif-

fer significantly from those considered in the previous studies. Control of the thrust

vector is assumed, and with vehicles of these dimensions no unusual response re-

quirements for the autopilot are foreseen.

Redundancy has been included in the guidance and control subsystems as indicated

by the reliability studies. These are indicated in the block diagram, Figure 6.2-22.

Among the components not redundant is the Earth sensor. This is because the

command or programmed mode of orienting the antenna is in itself redundant to

Earth tracking operation.
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Bus Antenna Control

Because of the wide variety of trajectories and trip times that are possible for the

various years with Saturn V missions, it is not always feasible to use an Earth

sensor to control the antenna during the trip. There are cases where the Earth-

spacecraft-sun angle is quite small at the time of arrival.

In these cases, the antenna will be oriented to Earth by programming or commanding
its orientation relative to the vehicle axes. With vehicle attitude dead bands of + 4

milliradians and antenna 3 db beamwidth of + 5 degrees there is ample tolerance to

permit open-loop antenna pointing.

There are advantages, however, in the use of an Earth sensor for missions in which

the Earth-spacecraft-sun angle is not prohibitively small. By reading the antenna

gimbal angles, an independent reading is obtained of the performance of two axes of
the attitude control.

For some types of Approach Guidance system using body-mounted sensors (other

than TV) an indication of any attitude bias errors is highly desirable and may be

essential. Also, in the event of a degradation in attitude control accuracy an Earth-

tracking antenna permits undegraded communications.
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As a further consideration the ability to go to a wider deadband is valuable as a means

of reducing the number of valve cycles, and the gas consumption, in case of an in-

dication of attitude control misbehavior. (It may be desirable to design the system

to operate with a wide deadband during the cruise period between the Midcourse

Correction and the beginning of the Approach phase. ) For these cases programming

the antenna becomes less adequate.

A final advantage is that an Earth Sensor facilitates continuous orientation of the

antenna to the Earth while Spacecraft attitude maneuvers are being executed.

As to the ability of the Earth Sensor to operate when the Earth is near the sun, it is

recognized that this is a severe requirement. The OAO star tracker, for instance,

can track a second magnitude star to a minimum angle of 32 degrees from the sun.

The Earth sensor problem, however, is less severe for the following significant
reasons:

.

The brightness of the Earth is greater than a second magnitude star by a

factor of perhaps 100 at the minimum. Depending on the sensor, its effec-

tive brightness may be much more because it has a finite image size.

The OAO tracker must tolerate sun impingement from any direction. The

end of the sun shield is exposed directly to the sun and in the worst case

half the periphery of the aperture will be illuminated directly by the sun.

Even with a razor edge this gives a finite bright area in the field of the

sensor. The Earth sensor, on the other hand, can be shaded by the antenna

so that nothing illuminated by the sun is in its field-of-view to act as a

source of diffuse light.

. The OAO tracker design has an effective aperture to light "noise" of about

half the actual optical aperture. The Nortronics long-range Earth sensor,

which also has a reed-type chopper, also has a fairly large effective aper-

ture for admission of noise. By contrast, an imaging detector such as an

image dissector, vidicon, or image orthicon, has an effective aperture to

stray light that is no larger than the instantaneous field-of-view of the

scan. Hence, these are inherently much less troubled by nearness of the
sun.

For these reasons, it appears to be feasible to achieve Earth sensor operation, if

necessary, of the order of 5 to 10 degrees from the sun. This applies, of course,

to the tracking condition and does not necessarily pertain to searching and acquiring

the Earth. It may also not be true for all attitude maneuvers that the antenna itself
could accommodate.

In any event, where the Earth sensor is used, the capability to program or command

antenna orientation relative to the vehicle will be provided as a backup. This gives

redundancy of the best type -- a different system with minimum likelihood of simul-

taneous failure from a single cause. For this reason a redundant Earth sensor is

6-45



not provided. It is more fruitful to provide redundancy to the appropriate servo
elements (pickoffs and circuitry) which are required to operate in any case.

The Antenna Control subsystem is shownin the block diagram, Figure 6.2-22.
It consists of the items shownin Table 6.2-10.

TABLE 6.2-10. ANTENNA CONTROLSUBSYSTEMWEIGHT TABLE

AntennaDrive Electronics

Actuator, Hinge

Actuator, Elevation

Earth Sensor

Weight
Single
System

(lb)

2

7.5

4.0

6.5

Redundant

System

(lb)

3

7.5

4.0

6.5

26,200-1b
Lander

(Ib)

3

7.5

4.0

13.0

6.2.3 PROPU LSION

The propulsion system for in-transit velocity adjustments for the Individual-cluster/

Buses utilizes N2H 4 Hydrazine as a monopropellant. The system is restartable,

incorporating the Shell spontaneous catalyst in the thrust chamber. Jet vanes are
used for thrust vector control. Thrust levels are different for each Bus weight.

All controls are redundant. Positive expulsion is supplied by a butyl bladder.

Nitrogen gas is used for pressurization. Sufficient propellant is available to impart

a _V of 600 feet per second to the Bus. A schematic of this system is shown in

Figure 6.2-29.

The propulsion system for attitude stabilization uses Freon-14 as a propellant as in

the previous Voyager studies. Two independent systems are used, each supplying

gas to a couple half. The gas supply is sized so that no single failure will cause a
mission failure. A schematic of the attitude control propulsion system is shown in

Figure 6.2-30.

A. Requirements

The propulsion in-transit system must impart a total of 600 feet per second to the

Bus at any time during transit, with as many as six separate burns. Neither thrust

level nor burn time is critical, except that burn time per burn should not exceed

about 15 minutes in order to keep to a reasonable value the navigating time on gyros.

The minimum AV increment is 5 feet per second. The _V tolerance attributable to

the propulsion system carmot exceed one foot per second. Weight is not critical;

therefore, considerable weight can be added in order to increase reliability and de-

crease development risk.
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The attitude control propulsion requirements for total impulse were presented in

Section 6.2.2 for the various Bus designs.

B. Analysis and Design

The reasons for selecting monopropellant hydrazine for the Titan IIIC Voyager

system were given in Section 4, Volume Ilb of the final report. These reasons,

in general, remain valid for the Saturn V Voyager, and these trade offs are only

summarized here. The weight comparison between a monopropellant and bipro-

pellant system is more significant because of the larger vehicle weight. With the

Titan IHC, the lower vehicle weight and lower _V requirement resulted in a hydra-

zine system weight of only 76.7 pounds. This was only a 7 percent weight increase

over a bipropellant system. This percentage increases as total impulse increases,

however, since the control valving weight becomes a much smaller part of the over-

all weight. With a very high total impulse, this percentage increase can approach

the percentage increase of the propellant itself, which varies with the _ V, but for

the present applications would be about 34 percent, assuming a specific impulse of

230 seconds for the hydrazine, and 300 seconds for the bipropellant. With the

largest system, this would correspond to approximately 250 pounds. This 250-

pound monopropellant system is considerably more reliable however. The thrust

chamber reliability can be much higher, since the chamber material can withstand

full steady-state temperature of the combustion products. A butyl bladder can be

used, negating practically all permeability and mechanical problems normally asso-

ciated with other in-tank positive expulsion devices. Thrust vector control can be

greatly simplified, since jet vanes can be used in the low temperature e"xhaust

streams. The monopropellant system is much less complex, and much less sus-

ceptible to spurious system pressure changes. One possible disadvantage not dis-

cussed in the Titan IIIC final report is the possible result of a meteorite striking

the tank. Such an occurrence could cause the entire tankful of N2H 4 Hydrazine to

decompose, according to tests reportedly run elsewhere in the industry. It is possi-

ble, however, that an impact sufficient to cause decomposition of hydrazine would

also cause tank failure of any propellant tank, and the release of the energy of

stored gas could well cause violent tank rupture and disable the vehicle.

Based on the foregoing information, a hydrazine monopropellant system is chosen

over the other systems discussed in the Titan IIIC study (cold Freon gas, peroxide

monopropellant and bipropellants). The hydrazine monopropellant blow-down
system also discussed is not chosen for the same reason mentioned in the Titan IIIC

study report: lack of development experience. Such a system would be ideal in the

present application where weight is not of prime consideration; it should be con-

sidered continuously in light of continuing development with monopropellant hydrazine.

The Curtiss-Wright "cap pistol" was also considered for this application. This is

an incremental solid system comprised of a number of solid motors, a container for

the motors, and a stepping mechanism which aligns the motor anu fires them. Since

6-48

I

I

I
I
I
I

I

I
I

I
I

I

I
I

I
I

I
I
I



I a velocity capability of 600 feet per second is required, with a tolerance of 1 foot

per second, a total of 600 motors would be required. Curtiss-Wright has done little

I on motors of the large size which would be required for this application.

Total weight of the in-transit propulsion system is shown as a function of velocity re-

I quired and system weight in Figure 6. 2-31.

WF/WO(WEIGHT OF PROPELLANT/TOTAL WEIGHT)

I 0.001 0.01 0.I

I0,000 L l , l i I I I I w , I I I I I I I I I I I l--II0'000

I I--- ENTER SOLID CURVE AT DESIRED Z_V I -II_ ANDREADWF/WO I -t
I--" MULTIPLY DESIRED VEHICLE WEIGHT BY WF/WO I / -I

I 1-- OBTAINED TO DETERMINE PROPELLANT WEIGHT I / -4
L ENTER DASHED CURVE WITH PROPELLANT I / _J
I- I / 'I

| _ / READT°TALwE'GHT°NLEFTSCALE )/ /I
'oooi ',ooo

' I
' II

I _ //_- _oo //- Ioo

I _ / ,,o._z,.__o.o,.o,_,._._ 4
I _ / ,_,._o_o,o_ -I

I0 1 _ I I I I I I II I I I I I III I I I I!I0
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PROPELLANT WEIGHT (LB)

I
Figure 6.2-31. In-Transit Adjustment Subsystem (Monopropellant)

I
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For the attitude control propulsion, the weight comparison betweencold gas and
higher performance propellants is again more significant than in previous studies
due to the larger total impulse required by the large vehicles. However, since Bus
weight is not critical, the cold gas system is used becauseof its higher reliability.

The weight of the attitude control propulsion subsystem as a function of total impulse

is shown in Figure 6.2-32.
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Figure 6.2-32. Attitude Control System Weight

6.2.4 COMMUNICATIONS

A. Summary

Three communication subsystem configurations are given for the five Lander sizes

being considered. They differ only in the amount of redundancy that they contain

and in the number of Landers for which they are used. The first configuration is

used in conjunction with each cluster of the 1400 and 2000-pound Landers, the second

configuration is used with each of the 6200 and 13,100-pound Lander, and the third is

used with the 26,200-pound Lander.
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Each Individual-cluster/Bus communication subsystem is required to provide track-

ing, telemetry, and command functions during the entire transit period after orbit

insertion. In addition, the subsystem associated with the 26,200-pound Lander must
provide these functions from lift off. A Midcourse Bus is used with the smaller

Landers for the latter function. Although these Midcourse Buses will be used to

satisfy the communication requirements up to the approach-guidance phase, the

Individual-cluster/Buses might be required in case the Midcourse Bus fails; i.e.,

redundant subsystems are available for the smaller Landers from orbit insertion to

the approach-guidance phase. The communication subsystem for the 26,200-pound

individual Bus has therefore been made more redundant to attain a reliability approx-

imately equal to that of the Midcourse and Individual-cluster/Bus combinations avail-

able for the smaller Landers.

B. Link Calculations

Link calculations are given in Table 6.2-11. The parameter values utilized in these

calculations are given in Table 6.2-12. In addition, the following should be noted:

i. Transmission range is 1 AU (150 million kilometers) in all calculations.

. The product of the gain, pointing loss, and polarization loss of each omni

antenna has been taken to be unity in the calculations. The actual values in

each case will depend on the interactingeffects of the radiating elements

and the vehicle in addition to the orientationof the vehicle with the Earth.

With proper design, however, thisassumption is valid over most of the

solid angle.

o

.

The APC noise bandwidths can be increased for faster acquisition in links

where the margin allows and where the modulating sidebands are sufficiently

removed from the vicinity of the carrier.

ST
The values ofx,--V-g-_ are determined as follows:

Telemetry links to Earth (Pe = 1.4 X 10 -3)

Theoretical = 6.5 db

Coding Gain = I.5 db

i.0 db (strong carrier)
Detection Losses =

3.0 db (thresholding carrier)

6.0 db (strong carrier)
Total =

8.0 db (thresholding carrier)

Command links from Earth (P = 10-5)
e

Theoretical = 9.7 db

Detection Loss = 8.8 db

Total = 18.5 db

The above total has been given by Motorola for their double-channel detector

operating at a rate of one bit per second. This value is expected to be con-

servative for a single-channel detector, especially at higher bit rates.
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TABLE 6.2-11. BUS LINK CALCULATIONS

Link 1

pose

Parameter

Total Transmitter Power

(dbm)
Transmitting Circuit Loss

Transmitting Antenna Gain

Transmitting Antenna

Pointin_ Loss

Space Loss

Polarization Loss

Receiving Antenna Gain

Receiving Antenna

Pointing Loss

Receiving Circuit Loss
Net Circuit Loss

Total Received Power

Receiver Noise Spectral

Density _N/B)

Carrier Modulation LOss

Received Carrier Power

Carrier APC Noise BW

CARRIER PERFORMANCE

TRACKING (one-way)

Threshold SNR in 2BLQ
Threshold Carrier Power

Performance Margin
CARRIER PERFORMANCE

TRACKING (two-way)

Threshold SNR in 2BI£)

Threshold Carrier Power

Performance Margin

CARRIER PERFORMANCE -

TE LEMETRY AND COMMAND

Threshold SNR in 2BI. _
Threshold Carrier Power

Performance Margin

DATA CHANNEL

TLM

(Prime)

44.0

-2.0

24.1

-I.0

-263.2

61.0

-0.2

-181.3

-137.3

-183.2

-6.0

-143.3

10.8

0.0

-172.4

29.1

2 3 4 5

TLM
TLM Command Command

(Early

Transit) (Backup) (Prime) (Backup)

44. 0 51.8 70.0 80.0

-2.0 -2.0 -0.5 -0.5

0.0 0.0 51.0 51.0

-263.2 -263.2 -262.5 -262.5

61.0 61.0 23.5 -

- - -0.8 -

-0.2 -0.2 -2.0 -2.0

-204. 4 -204, 4 -191.3 -214.0

-160.4 -152.6 -121.3 -134.0

-183.2 -183.2 -164.0 -169.0

-3.0 -3.0 -4.4 -4.4

-163.4 -155.6 -125.7 -138.4

10.8 10.8 13.0 10.0

0.0 0.0 - -

-172.4 -172.4 - -

9.0 16.8 - -

2.0 2.0 2.0 3.0 3.0

-170.4 -170.4

27.1

6.0

-166.4

23.1

Modulation Loss -i, 3

Received Data Subearrier
-138.6

Power

Bit Rate (l/T) 26.0

Required ST/N/B 6.0
Threshold Subearrier Power -151.2

Performance Margin 12, 6

SYNC CHANNEL

Modulation LOss -1.3

Receiver SYNC Sub-
-138.6

carrier Power

SYNC APC Noise BW -3.0

Threshold SNR in 2BI, O 10.0
Threshold Subcarrier Power -176.2

Performance Margin 37.6

-170.4 -148.0 -156.0

7.0 14.8 22.3 17.6

6.0 6.0 6.0 6.0

-166. 4 -166.4 -145.0 -153.0

3.0 10.8 19.3 14.6

-3, 0

-163.4

-3.0

-155.6

-1.9

-123.2

-1.9

-135.9

6. 0 6.0 10.0* 0.0*

8.0 8.0 18.5 18.5

-169.2 -169.2 -135.5 -150.5

5, 8 12,313,6

-3.0

14, 6

-163.4

-3.0

-155.6

1.9

-123.2

-1.9

-135.9

-3.0 -3.0 3.0 3.0

i0.0 10.0 15.5 15.5

-176.2 -176.2 -145.5 -150.5

12.8 22.320.6

*Refers to symbol rate (symbol rate equals twice the bit rate)

14.6
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TABLE 6.2-12. SUMMARY OF LINK PARAMETERS

Link

Purpose TLM

(Prime)

Power Transmitted

(watts}

Transmitting
Antenna

2 3 4

TLM

(Early Transit)

TLM

(Backup)

Command

(Prime)

5

Command

(Backup)

Frequency (mc) 2295 2295 2295 2115 2115

25 25 150 10kw 100kw

Receiving
Antenna

Receiver Noise

Figure

Receiving System

Noise Temp. (OK)

3-ft

dish

210-ft

dish

35

-3
I.4x10

3.0

Neg

12

0.5

i 60

Probability of
Bit Error

Transmitting Ant.

Pointing Error

(Degrees)

Dual

Turns tile

(Omni)

210-ft

dish

35

-3
1.4x10

Neg

12

0.5

+ 45

Receiving Ant.

Pointing Error

(Degrees)

Dual

Turnstile

(Omni)

210-ft

dish

35

-3
i. 4x10

Neg

12

0.5

+ 45

Carrier APC Noise

nw (2BLo) (C PS)

85-ft

dish

3-ft

dish

10 db

29O0

-5
i0

Neg

3.0

2O

2.0

+
-53

Sync APC Noise

BW (2BLo) (C PS)

Phase Deviation

(Degrees)

85-ft

dish

Dual

Turnstile

(Omni)

5 db

915

-5
10

Neg

10

2.0

+53
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C. Subsystem Design

1. Functional Description

a. Cluster Bus (1400 and 2000-Pound Landers I - The functional block diagram of the

Cluster Bus communication subsystem is shown in Figure 6.2-33. This overall sub-

system comprises the deep space transmission subsystem, the command and com-

puter subsystem, and the data processing subsystem.

The deep-space transmission subsystem provides for transmission of all data from

the Bus to Earth, reception of commands from Earth, and cooperates with the DSIF

in the tracking (doppler, angle, and turn-around ranging) of the Bus from Earth. It

comprises all RF equipment and the command detectors.

The low-gain Bus antenna consists of two turnstiles located on opposite sides of the

vehicle. It gives nearly omnidirectional coverage except in the meridial plane be-

tween the two radiating elements and is used as a backup for the normal mode. If

the Midcourse Bus fails during the early-transit phase, this antenna provides com-

munications during the remainder of the phase for each cluster.

The three-foot high-gain antenna is used in the normal mode after Midcourse Bus

separation unless separation occurs prematurely in the early-transit phase. Although

it provides transmission of scientific and engineering data, the relatively high data

rate (400 bits per second) that it allows at encounter is used primarily for trans-

mission of TV approach guidance data (approximately 45 minutes per frame).

Redundant 25-watt Klystron amplifiers are used in the normal mode and reception of

commands is through a transponder with a 10-db noise figure and a 20-cps loop band-

width. The command data rate is five bits per second at encounter range using the

85-foot dishes and 10-kw transmitters of the DSIF.

The 25-watt Klystron and 130-watt Amplitron amplifiers in the omni link are used

simultaneously in the backup mode resulting in a total output of approximately 150

watts. During the early-transit phase, however, only the 25-watt amplifier is used

(assuming previous failure of Midcourse Bus) and the Amplitron essentially acts as

a waveguide. A tunnel-diode preamplifier with a 5-db noise figure is included in

the receiving circuit and the transponder loop bandwidth is reduced to 10 cps to in-

crease the command range. The command rate is 0.5 bits per second assuming the
use of the 85-foot dishes and 100-kw transmitters. Redundant transponders and

command detectors are used in both the high-gain and omni modes for greater re-

liability.

The command and computer subsystem is functionally identical to that of the Landers.
It receives commands via the Midcourse Bus while the latter is attached and directly

from the Earth after separation. The functions of the Landers in the cluster and the

functions of the Cluster Bus itself are controlled by this subsystem.
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The data processing and storage subsystem is also functionally identical to that of

the Landers° It collects data from the Cluster Bus and its associated Landers and

provides the data either to the Midcourse Bus (before separation) or the Cluster Bus

transmission subsystem. The tape recorder is used only for the approach-guidance

TV data.

b. Individual Bus (6200 and 13,100-Pound Landers) - The block diagram for the

communication subsystems of the Individual Buses associated with the 6200 and

13,100-pound Landers is shown in Figure 6.2-34. It is identical to that of the deep

space transmission subsystem for the Cluster Buses, but does not include the com-

mand detectors. The subsystem also operates in the same modes, providing com-

munications after Midcourse Bus separation even if the Midcourse Bus fails pre-

maturely. All command and data processing functions are provided by the associated

Lander and are identical to those described for the Cluster Bus.

FROM
LANDER

TO LANDER

COMMAND DETECTORS

: KLYSTRON
ESW

KLYSTRON
E6W

'TRANSPONDER_

TRANSPONDER

TRANSPONOER_

• TRANSPONDER

KLYSTRON
-- 2SW

I PREAMP1 r----'-_l [ AMPLiTRON

13OW

Figure 6.2-34. Individual Bus Communication Subsystem (6600 and 13,100 Pound Landers)

c. Individual Bus (26_200 Pound Lander) - The block diagram of the communication

subsystem for the Individual Bus of the largest Lander is shown in Figure 6. 2-35.

This subsystem comprises the two Bus subsystems described previously: a com-

plete Cluster Bus subsystem which, in the normal mode, performs all communica-

tion functions until separation after the approach guidance phase; and the independent

RF subsystem which, with the Lander command and data handling equipment, can

perform the same functions in the backup mode.
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The greater redundancyof this subsystem has beenprescribed so that the overall
reliability will beat least as great as that of the Midcourse Bus plus Individual Bus
used for the two smaller Landers.
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2. Performance Characteristics I
Bit rates selected for the five links defined in Section 4.2.1 are:

Link i (prime telemetry mode) - 400 bits/sec I

Link 2 (early-transit telemetry mode) - 4 bits/sec

Link 3 (back-up telemetry mode) - 4 bits/sec I

Link 4 (prime command mode) - 5 bits/sec

Link 5 (back-up command mode) - 0.5 bits/sec I

Four bits persecond has been selected for link 2 to obtain maximum range for this

mode; however, higher rates can be transmitted at short range if desired. I

Figure 6.2-36 shows the margin in each link as a function of range. Encounter
range is approximately 200 million kilometers. The margin shown in each case is I

that of the channel which thresholds first. These are the data channels in links 1

and 4, and the carrier channel in links 2 and 3. All channels threshold simultaneously
in link 5. I

40

1 I i 1 I '
30 _ .BACKUP COMMAND I I / I

.,PRIME COMMAND

z I_ "___ _ BACKUPTELEMETRY

EARLY-TRANSIT _ __ _ I

TELEMETRY __ _

o , I,,,, _. ' __' I
20 40 100 200 400 t000

TRANSMISSION RANGE (Kin x I06)

Figure 6.2-36. Link Margin Versus Transmission Range
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3. Size, Weight, and Power Estimates

The component list and estimates of size, weight, and power are given in Table

6.2-13 for the three Bus communication subsystems. It does not include cabling,
harnessing, and payload compartment package structure. These are included in the

overall Bus we ights given in Section 6.4.

6.3 MIDCOURSE BUS

The system configuration selected for the Saturn V payload include a Midcourse

Bus for each Lander size other than the 26,200-pound Lander. The Midcourse Bus

is located at the upper end of the spacecraft as shown in Figures 6.2-14 and 6.2-17.

All required subsystems are contained within the Bus and are operative until the

Midcourse Bus is separated from the Bus/Lander units of the spacecraft.

6.3.1 STRUCTURE

In order to use common designs, the Midcourse Bus structure is essentially the

same as the large Individual Bus. The Midcourse Bus, therefore, is of aluminum

semi-monocoque construction and utilizes as much of other designs as possible.

The physical size of the Bus dictates the structural weight since minimum gages of

material must be used when building the structure. The weight of the Midcourse

Bus is 743 pounds and the weight breakdown was shown in Table 6.2-1. Since the

Midcourse Bus carries no launch loads other than its own weight, the structure

weight is constant for all system configurations.

6.3.2 GUIDANCE, CONTROL, AND PROPULSION SUBSYSTEMS

The block diagram description of the guidance, control, and propulsion subsystems

for the Midcourse Bus is identical to that for the Individual-cluster/Bus except that

the terminal guidance equipment is not included in the Midcourse Bus. The impulse

requirements for attitude control are obviously different due to the vehicle size dif-

ference. Requirements are tabulated in Table 6.3-1 for a 400-day trip, and are

shown as a function of trip time in Figures 6.3-1 through 6.3-4. The weight of the

attitude control propulsion to supply these total impulses can be determined from
Figure 6.2-32.

The in-transit velocity adjustments provided by the Midcourse Bus do not include

time of arrival adjustments or terminal guidance corrections. A total velocity capa-

bility of 300 feet per second is provided in this Bus. The weight of the propulsion

system is shown in Figure 6. 2-31 as a function of total system weight and velocity
required.
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TABLE 6.3-1. ATTITUDE CONTROL IMPULSE REQUIREMENTS

(MIDCOURSE BUS)

t

t
I

I
1
i
t

System Configuration

1400-1b Landers

2000-1b Landers

6200-1b Landers

13,600-1b Landers

Axis

Pitch

Roll

Yaw

Pitch

Roll

Yaw

Roll

Pitch

Yaw

Roll

Pitch

Yaw

Impulse Required

lb-sec

1455

572

975

3002

718

4OO

483

1601

2170

262

1460

3892

2430

1215

1640

5285

I

t
1
I

I
I
I
t
I

6.3.3 COMMUNICATION SUBSYSTEM

A. Summary

The Midcourse Bus communication subsystem provides all communication functions

from liftoff until the beginning of the approach-guidance phase for the four smallest

Lander configurations. If it fails during the transit phase, the Individual-cluster/

Buses can complete the mission. The primary advantage of this communications re-

dundancy, in addition to increased reliability, is that only one vehicle must be con-

trolled and tracked instead of all the clusters or individual Landers which make up
the overall vehicle.

B. Link Calculations

Since the Midcourse Bus transmission subsystems are specified to be identical to

those of the Individual-cluster/Buses, the link parameter values and calculations are

identical to those given previously in Tables 6.2-11 and 6.2-12.
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C. Subsystem Design

1. Functional Description

The block diagram of the Midcourse Bus communication subsystem is shown in

Figure 6.3-5. Itis identicalto that of the Cluster Bus described previously except

that itdoes not include a tape recorder.

The deep space transmission subsystem parameter values are as defined for the

Cluster Bus. Modes of operation differ, however, in that the Midcourse Bus pro-

vides communication through the omni during the early-transit phase and then through

the high-gain dish untilthe approach guidance functions, and will separate from the

clusters or individual Landers prior to thisphase.

The subsystem collects data from the data processing and storage subsystems of

the Cluster Buses of the two smallest Landers or of the 6600 and 13,100-pound

Landers and from the Midcourse Bus itself. It also issues commands to the com-

mand and computer subsystem of the Cluster Buses or the Landers and to the Mid-
course Bus.

As defined here, the Midcourse Bus subsystem does not collect data directly from

sensors on the Landers (although this might be desirable and can easily be imple-

mented for selected sensors). Rather, each Lander data processing and storage

subsystem collects its own data. Where Cluster Buses are used, a Cluster Bus

multiplexes the data from its associated Landers and the Midcourse Bus then multi-

plexes the data from the Cluster Buses for transmission to Earth. Commands are

distributed to the Landers through the Cluster Buses in the reverse manner.

2. Performance Characteristics

The transmission capabilities of the Midcourse Bus communication subsystems are

identical to those of the Individual-cluster/Buses and are given in Section 6.2.4(C)(2).

3. Size, Weight, and Power Estimates

The component list and estimates of size, weight, and power for the Midcourse Bus

communication subsystem are given in Table 6.3-2. It does not include cabling,

harnessing, and payload compartment package structure. These are included in

the overall Bus weights given in Section 6.4.
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TABLE 6.3-2. SIZE, WEIGHT, AND POWER ESTIMATES

(MIDC OURSE BUS)

Unit Unit

Component No. Size Weight

(ib)

DEEP SPACE TRANSMISSION

SU BSYST E M

Diplexer

High-Gain Antenna
Omni Antenna

Preamplifier

Transponder

Klystron Amplifier (25w)

Amplitron Amplifier (130w)

Command Detector

RF Switch

Isolator and Load

6x3.25x2 in.

3-ft dish

2.5x2.5xl. 3 in.

2x2x4 in.

184 in.3

130 in.3

280 in.3

4x4x5 in.

2x2x2 in.
3

10 in.

1.0

7.0

2.0

2.0

5.4

8.0

13.0

3.0

1.0

0.75

DATA PROCESSING AND STORAGE

SUBSYSTEM

Data Processing Unit

Buffer Storage Unit
180 in.3
140 in.

9.0

4.0

COMMAND AND COMPUTER

SUBSYSTEM

Command and Computer Equip.

Power Conversion and Control

1

1

200 in. 3

193 in. 3

12.0

7.0
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6.4 PARAMETRIC WEIGHT SUMMARY

Based on data from the preceding sections covering Bus Structure, Guidance and

Control, Propulsion, and Communication, the final curves of Bus Weight versus

Nimbus and weight of Landers are shown in Figures 6.4-1 through 6.4-8.

It is possible to consider the clusters of Buses as individual units. Assuming each

cluster as a unit, Figure 6.4-9 indicates the relationship between total Bus weight
and number of clusters.
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7.1 REQUIREMENTS

7. STERILIZATION

The requirement for terminal sterilization creates a severe design environment for

the planetary Lander. Compatibility with the specified sterilization environment must

be a basic design requirement from the beginning of any program.

The extremely large size of the Lander proposed for the Saturn V launch vehicle causes

a new range of problems which may affect the basic sterilization requirement. At pre-

sent, the basic requirements for sterilization are a matter of NASA policy (Ref. 7.1)

and may be summarized as follows:

1. The Lander will be assembled in clean rooms at specified levels of assembly.

2. The landing assembly will be subjected to an approved sterilization procedure.

. The landing assembly will be enclosed in a bacteriological barrier to maintain

cleanliness and sterility. After decontamination, the enclosure will not be

opened within any portion of the Earth's atmosphere which might re-contamin-

ate the landing assembly.

At the present time, the methods and procedures for implementing these requirements

is a matter which is receiving considerable study by NASA and others; and which is a

subject of some controversy. Most of the work to date, however, has considered

vehicles in a size range of the smallest vehicle considered for the Saturn V launch
vehicle.

At the present time the recommended sterilization cycle is 24-hour exposure at 135°C.

The 24-hour dwell period does not begin until the coldest portion of the spacecraft has
stabilized at 135°C.

The selection of a 24-hour dwell at temperature is based upon the fact that during ex-

posure to lethal temperatures a given strain of organisms will die exponentially. A

discussion of the procedure used to establish the recommended time period can be

found in Reference 7.2. It suffices to say that the "degree of sterility" following a

specified exposure is dependent upon the number of organisms present at the beginning

of the sterilization cycle. In arriving at the 24-hour figure, it was assum._d that the
spacecraft would begin terminal sterilization with a "biological load" of 10- viable

organisms. This estimate was made by Hobby (Ref. 7.3) for the Mariner Spacecraft; a

much smaller vehicle. Although this estimate has been felt by some to be conservative,

no one has proposed a revised figure.
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I
The desired "probability of being sterile" is often given as 10 -4 . It is convenient to

think of the change from 109 organisms to 10 .4 organisms in reduction by 13 logs. I

This approach was proposed byJaffe (Ref. 7.4). Figure 7.1-1 illustrates this concept.

It is apparent that if the initial load increases then the total time required for steriliza- Ition will increase.

- !Q

i0_2

,oI-_'-_Lo_ .o._ouc_,__o_s,. II.

4 _
I0 _ SLOPE TO REDUCE

14 LOGS

 .ooF =
:_ 10-41 '"" I

0 8 16 24

TIME OF EXPOSURE (HR)

Figure 7.1-1. Effect of Exposure to Sterilizing Environment on a Homogeneous

Microbial Population

Everytime the initial population increases by a factor of 10, the sterilization time

increases by approximately two hours. It would appear that in making the change from

a vehicle of approximately 800 pounds to a 26,000-pound vehicle, the number of organ-

isms present would probably be increased at least tenfold.

If the vehicle were a homogeneous sphere the weight increase from 800 to 26,000 pounds

would reflect a radius change of 3 4]26,000 3 _ _ 3.2 while the surface area
8oo =

would have increased by a factor of (3.2) 2 or 10.25. Thus using a very crude approach,

it can be seen that the selection of the largest vehicle may increase the required

sterilization dwell time. In actual fact the total surface will probably increase much

more than tenfold if a 26,000-pound vehicle is used. Hence, the sterilization time

could increase significantly. If this occurs many of the current studies, which only

consider the results of a 24-hour cycle, may no longer be valid. It is conceivable that the

selection of the largest Lander could negate much of the work done on previous sterili-

zation studies.
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It is also apparent that the heating and cooling times required to bring a 26,000-pound

vehicle to and from the soak at 300°F will be a large portion of the total time exposure.

The heating requirement poses a significant design problem since a 434-inch vehicle in

a sterilizable container is an awkward package and requires either a very large oven or

a portable heating facility of a scale without precedent in previous spacecraft support

systems. One study of large Lander vehicles (Ref. 7.5) recommended sterilization on

the launch pad using the aerodynamic shroud as a container and supplying heated gas

from an external supply. This concept could be adapted to feature a special steriliza-

tion container with heated walls which could be used as a chamber only. The actual

sterilization barrier would be the plastic film bag or metallic canister. Following the

specified thermal exposure the special heater could be removed and replaced by the

aerodynamic fairing.

With the selection of smaller Lander vehicles, the use of sterilization chambers in the

hangar becomes more feasible.

7.2 DESIGN APPROACH

For the five basic configurations which have been considered for the Saturn V study, the

sterilization problems vary widely. At one end of the spectrum of difficulty the large

26,000-pound vehicle presents problems of a scale not yet considered in previous

sterilization work. At the other extreme the 1400-pound vehicles represent the most

easily sterilized payloads. Vehicles of this size are consistent with previous NASA

studies and many of the problems are currently being evaluated.

The design approach for sterilization considerations may vary widely depending on which

vehicle is selected. Table 7.2-1 provides a comparison of design problems which

result from the sterilization requirement.

From Table 7.2-1 it may not be apparent why rigid containers have been selected for the

smallest Landers while flexible films are preferred for very large Landers; particularly

since film containers are susceptible to handling damage. The reasoning behind this

design choice is summarized in Table 7.2-2.

7.3 BASIC PROBLEMS

The sterilization environment is one of the most critical design conditions for the lander.

All electronics packages must be carefully designed for these conditions. All materials,

structural and non-structural will tend to degrade. Tanks, pressure vessels, hermeti-

cally sealed components, sealed structural panels, fluid lines and valves must all be

designed to withstand the increased pressures resulting from terminal sterilization.

Simultaneously, the elements must be designed for the reduced allowable stresses

which result from the exposure.
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TABLE 7.2-2. COMPARISON OF RIGID AND FLEXIBLE STERILIZATION CONTAINERS

I

I

Large
Landers

(with

Extensible)
Flares

Small

Landers

Rigid Flexible

• Tolerance, clearance and separ-

ation problems

• Large flares dictate complex
shape

• Possible damage to lander durin_

mating

• Access during and after mating

very difficult

• Rigid canisters offer protection

during handling and transporta-

tion which may occur in hangar.
• Separation interface is positive

jettison of rigid elements is

straight forward

h_

o_

• Separation or jettison with minor

contact does not cause damage

• Large vehicles may be sterilized

on pad. Minimal handling and

transportation required.

• Jettison of large film containers

creates design problems.

• Susceptible to punctures, tears

or handling damage

• Separation and jettison problems

The problems involved in fueling the RTG have a significant effect on the design of the

sterilization containers. Based on the current NASA "no access" philosophy, the RTG

would be fueled prior to terminal sterilization. Problems of heat rejection from the

RTG radiator must be considered in the design of the sterilization container. In the

case of the smaller vehicles, it is proposed that the radiator design be integrated with

the design of the canister. This approach is shown in Figure 7.3-1. Although it requires

a remotely actuated fluid disconnect, it nevertheless promises to simplify to heat

rejection design problem.

The radiator loops are located on the external surface of the canister and are disconnected

prior to separation by an explosively activated valve. Sufficient loops are provided on

the back face of the Lander to provide cooling after separation from the Orbiter and

during planetary entry.
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INTERFACE MATING
SECTION OF
CANISTER

REENTRY SHIELD

RTG

,It REMOTELY ACTUATED
FLUID DISCONNECT
( TO RADIATOR)

EXTERNAL
RADIATOR

_LANDER
ADAPTER

BUS-ADAPTER

STRUCTURAL INTERFACE
WITH ADJACENT LANDER

VEHICLE

"_AFTER CANISTER IS SEPARATED FROM

LANDER, RADIATOR COOLING LOOPS ON
AFT FACE OF LANDER REJECT EXCESS
RTG HEAT

Figure 7.3-1. Typical 6200-Pound Lander Showing Integration of
External Radiation with Sterilization Canister

REENTRY SHIELD

INTE RFACE- MATING
SECTION OF
CANISTER RTG

THERMALLY
TRANSPARENT

WINDOW AROUND
RADIATOR

INTERNAL
RADIATOR

STRUCTURAL INTERFACE WITH
ADJACENT LANDER VEHICLE

Figure 7.3-2. Typical 6200-Pound Lander Showing Integration of
Internal Radiation with Sterilization Canister
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Another approach which might be employed would feature an internal radiator and a

transparent window in the sterilization canister for heat rejection. The selection of a

transparent window with acceptable thermal characteristics may require careful evalua-
tion.

This approach eliminates the requirement for remotely actuated valve but creates

potential leak problems for the canister. A typical container is shown in Figure 7.3-2.

If the NASA no-access requirements are relaxed, the problem of aseptic entry and

fueling still remains. At present there is no work on this specific problem in progress
within NASA.

Numerous other sterilization-related problems are currently being studied. A summary

of work in progress can be found in Reference 7.6.

7.4 REFERENCES

7.1 "NASA Management Manual", Chapter 4, Number 4.4.1 NASA Unmanned Space-
craft Decontamination Problem

7.2 "Criteria Development Studies for an Assembly, Test and Sterilization Facility,"

Daniel, Mann, Johnson and Mendenhall for Jet Propulsion Laboratory, April

1964, P. II-3

7.3 "Sterilization Criteria for Mariner Spacecraft Design" Internal Communication,

G. Hobby, Jet Propulsion Laboratory, Pasadena, 1962.

7.4 "Sterilizing Unmanned Spacecraft Astronautics," L. D. Jaffe, August 1963,

p. 22-29

7.5 "A Study of Advanced Voyager/Beagle for Saturn V," General Electric Re-entry

Systems Department, Document RSD 70036, March 1964.

7.6 Unpublished brochure, Jet Propulsion Laboratory Pasadena, California, August

1964. All sterilization tasks for 1963 and 1964 were summarized for presentation

to the NASA Advisory Committee on Spacecraft Sterilization which met at

Pasadena on August 17-19, 1964.
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8. ADDITIONAL CONSIDERATIONS

Two additional areas covered in this study relating to the basic vehicle design are

reported in this section. They are the means for including Orbiters as part of the

overall Saturn V payload, and a definition of the problem posed by attempting to protect
the scientific payload to a radiation level substantially lower than the 10 rads used in the

basic study.

8.1 ORBITERS

The use of Orbiters as part of the payload of a Saturn V was considered throughout the

study, although no effort was expended to provide a specific design of an Orbiter. At

the beginning of the study it seemed possible to mount an Orbiter similar to the Titan IIIC

Orbiter (3600 pounds) in lieu of a Lander. This would have allowed a mix of Landers

and Orbiters. However, the Orbiters would not be utilized until after separation from

the total spacecraft. The concept of an orbiting spacecraft was then studied in the

context of the various system configurations considered for this study. With the

exception of the single large Lander these configurations all include the use of a Midcourse

Bus which is attached, in the launch condition, to the upper end of the spacecraft. In

order to provide the fullest utilization of equipment, it was decided that the optimum

method of packaging an Orbiter would be to modify the Midcourse Bus to make it
suitable as an Orbiter.

An Orbiter can be made from the Midcourse Bus by adding subsystems such as the

orbit insertion, propulsion, terminal guidance (if required}, electrical power, plus the

required scientific instrumentation. The attitude control impulse must be increased,

and some additional communication equipment is required. Sufficient volume is

available for the larger propellant tanks needed for an orbiting spacecraft. Since an

Orbiter would not only duplicate, but exceed in reliability all of the required Bus

subsystems, the Orbiter could fulfill the requirements oZ the Midcourse Bus.

In a situation in which a single large Lander is the Saturn V payload, an Orbiter can be

substituted for the Individual Bus by addition of appropriate subsystems.

A weight comparison between a typical Midcourse Bus and a typical Orbiter is shown in

Table 8.1-1. The midcourse propellant is maintained the same in both cases, since the

total weight is approximately the same. In actuality, use of the bi-propellant orbit

insertion system for midcourse correction as well would result in a weight reduction.

8.2 RADIATION SHIELDING FOR HIGHLY SENSITIVE INSTRUMENTS

Shielding requirements for scientific instrumentation of the type listed in Table 8.2-1

represent a formidable problem fromboth a systems and design viewpoint as indicated in

Table 8.2-1. It is felt that the typical radiation levels shown in Table 8.2-2, apply

8-I



TABLE 8.1-1. COMPARISONOF ORBITER ANDMIDCOURSEBUS

I

I
Subsystem

Structure

Guidance & Control

Communications

Propulsion (Dry)

Power Supply

Miscourse Propellant

Payload

SUB TOTAL

Propellant (Midcouse)

Propellant (Orbit Insertion)

TOTAL

Midcourse Bus

Weight (lb)

743

360

145

410

1658

1390

3048

Orbiter (1971)

Weight (lb)

743

460

230

600

250

350

2633

1390

2420

6443

I

I
I
I

I

I
I

I
to the first two experiments but are probably not a realistic factor in the latter two experi-

ments. Individual experiment complexity and limitations must be considered in the

latter two. It would appear, however, that total count rates on the order of one count/

cmZ/sec might well be tolerated, and consideration of the nature of the excitation might

further reduce requirements.

Use of isotopes as the energy source for generation of electricity introduces a high

intensity radiation field, particularly if Cm 244 is the isotope. Instruments with a 4

geometry measurement requirement would be swamped by the power source radiation.

Even with the application of shielding, the instruments would have to be placed sufficiently

far from the power source and shielding provided so as to maintain the 4Y geometry

requirement; the Lander and Bus structure will also affect the 4 y symmetry of measure-

ment and thus bias the measurements. It would seem, therefore, that the requirement for

these instruments could best be met by placing the instruments on booms extending from

the Bus, or the Lander after impact, with some shielding added to shadow the power supply
radiation.

8-2

I

I
I

I
I

I

I
I
I



I

I TABLE 8.2-1. SCIENTIFIC EXPERIMENTS

I

I

I

I
I

I
I

I
I

I

I
I

I

I

IONIZATION CHAMBER

Detects and measures average omni-

directional flux of corpuscular radia-

tion in regions between Earth and

Mars. Measures the average specific
ionization of this flux. Measures omni-

directional flux and specific ionization

of charged particles which may be

trapped around Mars.

GEIGER - MUELLER TUBE

Essentially same as Ionization Chamber.

TRAPPED RAD_TION DETECTOR

Makes a preliminary estimate of mag-

netically trapped particles around Mars

their distribution, energy spectra and

identity. Also monitors solar cosmic

rays and energetic electrons in inter-

planetary space to determine their dis-

tribution, energy spectra and time

history.

COSMIC RAY TELESCOPE

Detects and measures trapped corpus-

cular radiation in the vicinity of Mars.

Measures flux and energy of _ -particle_,

and protons as a function of position

and time. It must be shielded only

from _ fluxes, shown in Figure 8.2-1.

I
I

I
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TABLE 8.2-2. TYPICAL RADIATION LEVELS

Energy Range

P roto ns

E _10 Mev

10 > E>0.02 Mev

20 Kev> E _ lev

_'s & Heavier Nuclei

E_ 10 Mev/Nucleon

10 > E > 0.02 Mev/Nucleon

20 Kev > E > lev

Electrons

E_0.5 Bey

0.5 Bev_E>Mev

1> E > 0.02 Mev

20 Key> E_ lev

Neutrons

E> 1 Mev

1> E_ 0.001 Mev

@
O

PU 238 Source

Intensity. 2.
300W RTG ( }

P articles/sec

c_-n

Max. E = 5.8 Mev

Continuous Spectrum
3.05 x 108

C m 244 Source
Intensity

300W RTG (2)

Particles/sec

CL- n

MaxE =61Mev

Continuous Spectrum

Allowable Flq_, (1)

Particles/c m 7sec

-3
3x10

-2
lxl0

1 x 106/decade E

-4
3x10

-3
1 xl0

1 x 106/decade E

-4
1 xl0

-3
lxl0

-3
1 xl0

1 x 106/decade E

-2
Ix10

-2
1 x 10_2
Ixl01 Key> E

Photons

E > 50 Mev

50 > E> 3 Mev

3,- E> 0.3 Mev

300 > E _ 100 Kev

10 Kev> E > 10ev

1.98 x 109

2.92 x 1011

5.1 x 108

4.95 x 1010

2.06 x 1011

1 x 10 -6
-3

5x10

1 x 101
lxlO

-2
1 xlO

(1) From JPL Correspondence D. Spencer to T. Barber,

(2) From GE

7 October 64
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8.2.1 SHIELDING

The shielding requirements are a function of the Lander configuration, the power

supply size, and the scientific experiments. Even if the instruments were defined,

it would be difficult to arrive at parametric data to define the shielding required.

In all Lander sizes, the power supply size is largely a function of the power required

by the scientific payload. In the larger size Landers, more than one power supply

module is used. Considering the possible variations in the power supply size, the

number of power supply modules, the Lander size, and the instrument placement,

the radiation intensity at any particular location in and around the vehicles can vary

over a very large range. In order to adequately define the shielding, it must be

possible to define the radiation field. Therefore, sufficient shielding was included

in the Lander design to give a sufficiently large volume having an integrated radiation
dose less than 10-rads for the placement of all sensitive equipment within the Lander.

Additional shielding requirements must be defined for a specific configuration and

the weight of any additional shielding is to be considered as part of the scientific

payload.

Shielding can be accomplished by separating the instruments and power supply(s)

so that the radiation intensity at the instrument is reduced to an acceptable level by

the isotopic radiation characteristic (inverse square law), an attenuating material

can be placed between the instruments and power supply{s) to accomplish the same

reduction in level, or a combination of distance and attenuating material can be used.

The relationships between radiation intensity at the instruments, distances, and

thickness of attenuating material are given in Figures 8.2-1 and 8.2-2 for 300-watt

cascaded RTG power supplies using Pu 238 and Cm 244, respectively. In these

curves, only the high energy photon and neutron radiation are considered (see

Table 8.2-2); the lower energy photon radiation is attenuated by Uranium or poly-

ethylene by thickness many times smaller than that required for the higher energy

photons. The attenuated radiation level at the instruments is approximately linear

with power supply module size for the sizes used in this study - 200, 300, and 500
watts.

8.2.2 SEPARATION

Some separation between the payload and RTG is achieved on the surface when the

aft cover is opened and RTGs are deployed. Additional separation can be achieved

by deploying instruments overboard.

Deployable booms of the overlap tube type {DeHavilland Rods) have been flight

proven for lengths up to 100 feet. Units up to 800 feet in length have been qualified

and recently a 1000-foot device was built and demonstrated. It appears that

reasonable separation distances may be obtained at the expense of a few pounds.
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238 Power Supply)
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For example, an 800-foot assembly including drive motor and mechanism weighs

approximately 13 pounds. These devices can be used to deploy instruments in the

transit phase.

Sufficient bending rigidity may be had because of the closed-tube nature of the boom;

however, torsional rotation may be a problem, especially at the long lengths

required. Should there be a requirement for preferred orientation of the instrument

(as there might be for the latter two experiments), the deployable boom devices as

they exist today would have to be modified.

At the present time there does not appear to be any problem in routing data trans-

mission lines and thermal control power leads (if required) to the experiment.

These rods are not particularly applicable for Landers on the surface. Instruments

can be deployed by other means, and distances of 20 feet or so can be achieved

for small instruments.

In summary, separation distances during transit for interplanetary measurements

can be quite large. For Lander equipments, it is extremely difficult to achieve
sufficient separation for radiation rates on the order of 10-2/cm2/sec even with

extremely heavy shielding.
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